Learn hub

Learn hub

Get expert-level resources on running research, discovery, and building
an insights-driven culture.

Learn more
1 min read

Why User Interviews Haven't Evolved in 20 Years (And How We're Changing That)

Are we exaggerating when we say that the way the researchers run and analyze user interviews hasn’t changed in 20 years? We don’t think so. When we talk to our customers to try and understand their current workflows, they look exactly the same as they did when we started this business 17 years ago: record, transcribe, analyze manually, create reports. See the problem?

Despite  advances in technology across every industry, the fundamental process of conducting and analyzing user interviews has remained largely unchanged. While we've transformed how we design, develop, and deploy products, the way we understand our users is still trapped in workflows that would feel familiar to product, design and research teams from decades ago.

The Same Old Interview Analysis Workflow 

For most researchers, in the best case scenario, Interview analysis can take several hours over the span of multiple days. Yet in that same timeframe, in part thanks to new and emerging AI tools, an engineering team can design, build, test, and deploy new features. That just doesn't make sense.

The problem isn't that researchers  lack tools. It's that they haven’t had the right ones. Most tools focus on transcription and storage, treating interviews like static documents rather than dynamic sources of intelligence. Testing with just 5 users can uncover 85% of usability problems, yet most teams struggle to complete even basic analysis in time to influence product decisions. Luckily, things are finally starting to change.

When it comes to user research, three things are happening in the industry right now that are forcing a transformation:

  1. The rise of AI means UX research matters more than ever. With AI accelerating product development cycles, the cost of building the wrong thing has never been higher. Companies that invest in UX early cut development time by 33-50%, and with AI, that advantage compounds exponentially.
  2. We're drowning in data and have fewer resources.  We’re seeing the need for UX research increase, while simultaneously UX research teams are more resource constrained than ever. Tasks like analyzing hours of video content to gather insights, just isn’t something teams have time for anymore. 
  3. AI finally understands research. AI has evolved to a place where it can actually provide valuable insights. Not just transcription. Real research intelligence that recognizes patterns, emotions, and the gap between what users say and what they actually mean.

A Dirty Little Research Secret + A Solution 

We’re just going to say it; most user insights from interviews never make it past the recording stage. When it comes to talking to users, the vast majority of researchers in our audience talk about recruiting pain because the most commonly discussed challenge around interviews is usually finding enough participants who match their criteria. But on top of the challenge of finding the right people to talk to, there’s another challenge that’s even worse: finding time to analyze what users tell us. But, what if you had a tool where using AI, the moment you uploaded an interview video, key themes, pain points, and opportunities surfaced automatically? What if you could ask your interview footage questions and get back evidence-based answers with video citations?

This isn't about replacing human expertise, it's about augmenting  it. AI-powered tools can process and categorize data within hours or days, significantly reducing workload. But more importantly, they can surface patterns and connections that human analysts might miss when rushing through analysis under deadline pressure. Thanks to AI, we're witnessing the beginning of a research renaissance and a big part of that is reimagining the way we do user interviews.

Why AI for User Interviews is a Game Changer 

When interview analysis accelerates from weeks to hours, everything changes.

Product teams can validate ideas before building them. Design teams can test concepts in real-time. Engineering teams can prioritize features based on actual user need, not assumptions. Product, Design and Research teams who embrace AI to help with these workflows, will be surfacing insights, generating evidence-backed recommendations, and influencing product decisions at the speed of thought.

We know that 32% of all customers would stop doing business with a brand they loved after one bad experience. Talking to your users more often makes it possible to prevent these experiences by acting on user feedback before problems become critical. When every user insight comes with video evidence, when every recommendation links to supporting clips, when every user story includes the actual user telling it, research stops being opinion and becomes impossible to ignore. When you can more easily gather, analyze and share the content from user interviews those real user voices start to get referenced in executive meetings. Product decisions begin to include user clips. Engineering sprints start to reference actual user needs. Marketing messages reflect real user voices and language.

The best product, design and research teams are already looking for tools that can support this transformation. They know that when interviews become intelligent, the entire organization becomes more user-centric. At Optimal, we're focused on improving the traditional user interviews workflow by incorporating revolutionary AI features into our tools. Stay tuned for exciting updates on how we're reimagining user interviews.

Learn more
1 min read

AI Is Only as Good as Its UX: Why User Experience Tops Everything

AI is transforming how businesses approach product development. From AI-powered chatbots and recommendation engines to predictive analytics and generative models, AI-first products are reshaping user interactions with technology, which in turn impacts every phase of the product development lifecycle.

Whether you're skeptical about AI or enthusiastic about its potential, the fundamental truth about product development in an AI-driven future remains unchanged: a product is only as good as its user experience.

No matter how powerful the underlying AI, if users don't trust it, can't understand it, or struggle to use it, the product will fail. Good UX isn't simply an add-on for AI-first products, it's a fundamental requirement.

Why UX Is More Critical Than Ever

Unlike traditional software, where users typically follow structured, planned workflows, AI-first products introduce dynamic, unpredictable experiences. This creates several unique UX challenges:

  • Users struggle to understand AI's decisions – Why did the AI generate this particular response? Can they trust it?
  • AI doesn't always get it right – How does the product handle mistakes, errors, or bias?
  • Users expect AI to "just work" like magic – If interactions feel confusing, people will abandon the product.

AI only succeeds when it's intuitive, accessible, and easy-to-use: the fundamental components of good user experience. That's why product teams need to embed strong UX research and design into AI development, right from the start.

Key UX Focus Areas for AI-First Products

To Trust Your AI, Users Need to Understand It

AI can feel like a black box, users often don't know how it works or why it's making certain decisions or recommendations. If people don't understand or trust your AI, they simply won't use it. The user experiences you need to build for an AI-first product must be grounded in transparency.

What does a transparent experience look like?

  • Show users why AI makes certain decisions (e.g., "Recommended for you because…")
  • Allow users to adjust AI settings to customize their experience
  • Enable users to provide feedback when AI gets something wrong—and offer ways to correct it

A strong example: Spotify's AI recommendations explain why a song was suggested, helping users understand the reasoning behind specific song recommendations.

AI Should Augment Human Expertise Not Replace It

AI often goes hand-in-hand with automation, but this approach ignores one of AI's biggest limitations: incorporating human nuance and intuition into recommendations or answers. While AI products strive to feel seamless and automated, users need clarity on what's happening when AI makes mistakes.

How can you address this? Design for AI-Human Collaboration:

  • Guide users on the best ways to interact with and extract value from your AI
  • Provide the ability to refine results so users feel in control of the end output
  • Offer a hybrid approach: allow users to combine AI-driven automation with manual/human inputs

Consider Google's Gemini AI, which lets users edit generated responses rather than forcing them to accept AI's output as final, a thoughtful approach to human-AI collaboration.

Validate and Test AI UX Early and Often

Because AI-first products offer dynamic experiences that can behave unpredictably, traditional usability testing isn't sufficient. Product teams need to test AI interactions across multiple real-world scenarios before launch to ensure their product functions properly.

Run UX Research to Validate AI Models Throughout Development:

  • Implement First Click Testing to verify users understand where to interact with AI
  • Use Tree Testing to refine chatbot flows and decision trees
  • Conduct longitudinal studies to observe how users interact with AI over time

One notable example: A leading tech company used Optimal to test their new AI product with 2,400 global participants, helping them refine navigation and conversion points, ultimately leading to improved engagement and retention.

The Future of AI Products Relies on UX

The bottom line is that AI isn't replacing UX, it's making good UX even more essential. The more sophisticated the product, the more product teams need to invest in regular research, transparency, and usability testing to ensure they're building products people genuinely value and enjoy using.

Want to improve your AI product's UX? Start testing with Optimal today.

Learn more
1 min read

Optimal vs. Great Question: Why Enterprise Teams Need Comprehensive Research Platforms

The decision between interview-focused research tools and comprehensive user insight platforms fundamentally shapes how teams generate, analyze, and act on user feedback. This choice affects not only immediate research capabilities but also long-term strategic planning and organizational impact. While Great Question focuses primarily on customer interviews and basic panel management with streamlined functionality, Optimal provides more robust capabilities, global participant reach, and advanced analytics infrastructure that the world's biggest brands rely on to build products users genuinely love. Optimal's platform enables teams to conduct sophisticated research, integrate insights across departments, and deliver actionable recommendations that drive meaningful business outcomes.

Why Choose Optimal over Great Question?

Strategic Research Capabilities vs. Interview-Centric Tools

Great Question's Limited Research Scope: Great Question operates primarily as an interview scheduling and panel management tool with basic survey capabilities, lacking the comprehensive research methodologies and specialized testing tools that enterprise research programs require for strategic impact across the full product development lifecycle.

Optimal's Research Leadership: Optimal delivers complete research capabilities spanning information architecture testing, prototype validation, card sorting, tree testing, first-click analysis, and qualitative insights—all powered by AI-driven analysis and backed by 17 years of specialized research expertise that transforms user feedback into actionable business intelligence.

Workflow Limitations: Great Question's interview-focused approach restricts teams to primarily qualitative methods, requiring additional tools for quantitative validation and specialized testing scenarios that modern product teams demand for comprehensive user understanding.

Enterprise-Ready Research Suite: Optimal serves Fortune 500 clients including Lego, Nike, and Netflix with SOC 2 compliance, enterprise security protocols, and a comprehensive research toolkit that scales with organizational growth and research sophistication.

Participant Quality and Global Reach

Limited Panel Access: Great Question provides access to 3M+ participants with basic recruitment capabilities focused primarily on existing customer panels, limiting research scope for complex audience requirements and international market validation.

Global Research Network: Optimal's 100M+ verified participants across 150+ countries enable sophisticated audience targeting, international market research, and reliable recruitment for any demographic or geographic requirement, from enterprise software buyers in Germany to mobile gamers in Southeast Asia.

Basic Recruitment Features: Great Question focuses on CRM integration and existing customer recruitment without advanced screening capabilities or specialized audience targeting that complex research studies require.

Advanced Participant Targeting: Optimal includes sophisticated recruitment filters, managed recruitment services, and quality assurance protocols that ensure research validity and participant engagement across diverse study requirements.

Research Methodology Depth and Platform Capabilities

Interview-Focused Limitations: Great Question offers elementary research capabilities centered on customer interviews and basic surveys, lacking the specialized testing tools enterprise teams need for information architecture, prototype validation, and quantitative user behavior analysis.

Complete Research Methodology Suite: Optimal provides full-spectrum research capabilities including advanced card sorting, tree testing, prototype validation, first-click testing, surveys, and qualitative insights with integrated AI analysis across all methodologies and specialized tools designed for specific research challenges.

Manual Analysis Dependencies: Great Question requires significant manual effort for insight synthesis beyond interview transcription, creating workflow inefficiencies that slow research velocity and limit the depth of analysis possible across large datasets.

AI-Powered Research Operations: Optimal streamlines research workflows with automated analysis, AI-powered insights, advanced statistical reporting, and seamless collaboration tools that accelerate insight delivery while maintaining analytical rigor.

Where Great Question Falls Short

Great Question may be a good choice for teams who are looking for:

  • Simple customer interview management without complex research requirements
  • Basic panel recruitment focused on existing customers
  • Streamlined workflows for small-scale qualitative studies
  • Budget-conscious solutions prioritizing low cost over comprehensive capabilities
  • Teams primarily focused on customer development rather than strategic UX research

When Optimal Delivers Strategic Value

Optimal becomes essential for:

Strategic Research Programs: When user insights drive business strategy, product decisions, and require diverse research methodologies beyond interviews

Information Architecture Excellence: Teams requiring specialized testing for navigation, content organization, and user mental models that directly impact product usability

Global Organizations: Requiring international research capabilities, market validation, and diverse participant recruitment across multiple regions

Quality-Critical Studies: Where participant verification, advanced analytics, statistical rigor, and research validity matter for strategic decision-making

Enterprise Compliance: Organizations with security, privacy, and regulatory requirements demanding SOC 2 compliance and enterprise-grade infrastructure

Advanced Research Operations: Teams requiring AI-powered insights, comprehensive analytics, specialized testing methodologies, and scalable research capabilities

Prototype and Design Validation: Product teams needing early-stage testing, iterative validation, and quantitative feedback on design concepts and user flows

Ready to see how leading brands including Lego, Netflix and Nike achieve better research outcomes? Experience how Optimal's platform delivers user insights that adapt to your team's growing needs and research sophistication.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.