Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

UX Design

Learn more
1 min read

Are users always right? Well. It's complicated

About six months ago, I came across aninteresting question on Stack Exchange headlined 'Should you concede to user demands that are clearly inferior?' It stuck in my mind because the question in itself is complex, and contains a few complicated assumptions.

In the world of user experience research and design, the users needs and wants are paramount. Dollars and hours are spent poring through data and interviewing and collating information into a cohesive explanation of what works and what doesn't for users. Designs are based on how users intuitively interact with products and websites. Organisations respond to suggestions that come through on support and on Twitter, and if a significant numbers of users want a particular change, chances are those organisations will act. But the question itself throws this most sacred of stances up in the air, because it contains the phrase 'user demands that are clearly inferior'. Now, that is a loaded statement.

How the good reconcile the existence of the bad

I imagine it's sometimes hard for designers to get rid of the feeling that they know best. As a writer, I know what I like and don't like. I 'know' good writing from bad, and I have strong opinions about books and articles that aren't worth the pages or bandwidth it takes to publish them. But this stance often puts me in conflict with the huge amount of empirical evidence that certain writing I disdain is actually 'good': and that evidence is readers. For Fifty Shades of Lame, it's millions of them. Aggghh!

In the same way, I've never met a designer who didn't have strong opinions about what they adore and deplore in their own art forms. And I wonder how tough it sometimes is to implement changes that to a designers mind make no sense. Do any of you UX designers out there ever secretly think, when you discover what users are asking for, 'these people have no taste, they don't know what they want, how ridiculous!'? Is there a secret current of despair and frustration at user ignorance running deep and unspoken through the river of design?

The main views from the Stack Exchange discussion

xkcd  Workflow

On Stack Exchange, Matt described how he and his team implemented a single tree view (75 items) with a scroll wheel, and because it was an internalchange,they were able to get quick feedback from existing users. The feedback wasn't positive, and many people wanted the change to be reversed. He explains: ‘To my mind, the way we redeveloped it is unambiguously better. But the user base was equally emphatic in rejecting it. So today, to the complaints of my fellow team members, I removed our new implementation and set it to work in the manner the users were used to.'

He then goes on to ask 'What was the right course of action here? Is there a point at which the user's fear of change becomes an important UX consideration in its own right?' The responses are varied and fascinating, and can be roughly broken into three camps:

  1. If your users don't want something, you'd be stupid to try and implement it.
  2. Users are often change averse, so if you really think your change will be better, then you need to ease them into it.
  3. If you're convinced the change is positive, you still need to test it on your users, and be open to admitting you were wrong.

So where do we stand?

One of the problems with the term 'User Experience' is the word 'user'. It's a depersonalised and generic way of describing who it is you're serving. Because there is a person at the heart of the enterprise who is trying to achieve something. They may not be trying to achieve what you expect them to. They certainly may not be trying to achieve what you want them to.

Context is everything.

Who is the person who is asking for a change, or asking for something to stay the same?We would argue that people aren't 'change-averse', but 'confusion/discomfort/inefficiency-averse' people want easier ways of doing things. So if by changing a feature you mess up a person's workflow, then potentially you didn't do your research.

If you look closely at the behavior of users — how people actually interact with a particular aspect of your design, rather than just hearing their opinions — then you'll be able to base your design on empirical evidence. So, we (roughly) come down on the side of the people who use the product. If they want to get something done, and they want to do that in a particular way, then they have right of way.

It's your job not to serve your tastes, but to give people the experience you promise them. And to the author of Fifty Shades of Grey, I say, 'Good on you EL James. You gave them what they wanted.'

What do you think?

Learn more
1 min read

When AI Meets UX: How to Navigate the Ethical Tightrope

As AI takes on a bigger role in product decision-making and user experience design, ethical concerns are becoming more pressing for product teams. From privacy risks to unintended biases and manipulation, AI raises important questions: How do we balance automation with human responsibility? When should AI make decisions, and when should humans stay in control?

These aren't just theoretical questions they have real consequences for users, businesses, and society. A chatbot that misunderstands cultural nuances, a recommendation engine that reinforces harmful stereotypes, or an AI assistant that collects too much personal data can all cause genuine harm while appearing to improve user experience.

The Ethical Challenges of AI

Privacy & Data Ethics

AI needs personal data to work effectively, which raises serious concerns about transparency, consent, and data stewardship:

  • Data Collection Boundaries – What information is reasonable to collect? Just because we can gather certain data doesn't mean we should.
  • Informed Consent – Do users really understand how their data powers AI experiences? Traditional privacy policies often don't do the job.
  • Data Longevity – How long should AI systems keep user data, and what rights should users have to control or delete this information?
  • Unexpected Insights – AI can draw sensitive conclusions about users that they never explicitly shared, creating privacy concerns beyond traditional data collection.

A 2023 study by the Baymard Institute found that 78% of users were uncomfortable with how much personal data was used for personalized experiences once they understood the full extent of the data collection. Yet only 12% felt adequately informed about these practices through standard disclosures.

Bias & Fairness

AI can amplify existing inequalities if it's not carefully designed and tested with diverse users:

  • Representation Gaps – AI trained on limited datasets often performs poorly for underrepresented groups.
  • Algorithmic Discrimination – Systems might unintentionally discriminate based on protected characteristics like race, gender, or disability status.
  • Performance Disparities – AI-powered interfaces may work well for some users while creating significant barriers for others.
  • Reinforcement of Stereotypes – Recommendation systems can reinforce harmful stereotypes or create echo chambers.

Recent research from Stanford's Human-Centered AI Institute revealed that AI-driven interfaces created 2.6 times more usability issues for older adults and 3.2 times more issues for users with disabilities compared to general populations, a gap that often goes undetected without specific testing for these groups.

User Autonomy & Agency

Over-reliance on AI-driven suggestions may limit user freedom and sense of control:

  • Choice Architecture – AI systems can nudge users toward certain decisions, raising questions about manipulation versus assistance.
  • Dependency Concerns – As users rely more on AI recommendations, they may lose skills or confidence in making independent judgments.
  • Transparency of Influence – Users often don't recognize when their choices are being shaped by algorithms.
  • Right to Human Interaction – In critical situations, users may prefer or need human support rather than AI assistance.

A longitudinal study by the University of Amsterdam found that users of AI-powered decision-making tools showed decreased confidence in their own judgment over time, especially in areas where they had limited expertise.

Accessibility & Digital Divide

AI-powered interfaces may create new barriers:

  • Technology Requirements – Advanced AI features often require newer devices or faster internet connections.
  • Learning Curves – Novel AI interfaces may be particularly challenging for certain user groups to learn.
  • Voice and Language Barriers – Voice-based AI often struggles with accents, dialects, and non-native speakers.
  • Cognitive Load – AI that behaves unpredictably can increase cognitive burden for users.

Accountability & Transparency

Who's responsible when AI makes mistakes or causes harm?

  • Explainability – Can users understand why an AI system made a particular recommendation or decision?
  • Appeal Mechanisms – Do users have recourse when AI systems make errors?
  • Responsibility Attribution – Is it the designer, developer, or organization that bears responsibility for AI outcomes?
  • Audit Trails – How can we verify that AI systems are functioning as intended?

How Product Owners Can Champion Ethical AI Through UX

At Optimal, we advocate for research-driven AI development that puts human needs and ethical considerations at the center of the design process. Here's how UX research can help:

User-Centered Testing for AI Systems

AI-powered experiences must be tested with real users to identify potential ethical issues:

  • Longitudinal Studies – Track how AI influences user behavior and autonomy over time.
  • Diverse Testing Scenarios – Test AI under various conditions to identify edge cases where ethical issues might emerge.
  • Multi-Method Approaches – Combine quantitative metrics with qualitative insights to understand the full impact of AI features.
  • Ethical Impact Assessment – Develop frameworks specifically designed to evaluate the ethical dimensions of AI experiences.

Inclusive Research Practices

Ensuring diverse user participation helps prevent bias and ensures AI works for everyone:

  • Representation in Research Panels – Include participants from various demographic groups, ability levels, and socioeconomic backgrounds.
  • Contextual Research – Study how AI interfaces perform in real-world environments, not just controlled settings.
  • Cultural Sensitivity – Test AI across different cultural contexts to identify potential misalignments.
  • Intersectional Analysis – Consider how various aspects of identity might interact to create unique challenges for certain users.

Transparency in AI Decision-Making

UX teams should investigate how users perceive AI-driven recommendations:

  • Mental Model Testing – Do users understand how and why AI is making certain recommendations?
  • Disclosure Design – Develop and test effective ways to communicate how AI is using data and making decisions.
  • Trust Research – Investigate what factors influence user trust in AI systems and how this affects experience.
  • Control Mechanisms – Design and test interfaces that give users appropriate control over AI behavior.

The Path Forward: Responsible Innovation

As AI becomes more sophisticated and pervasive in UX design, the ethical stakes will only increase. However, this doesn't mean we should abandon AI-powered innovations. Instead, we need to embrace responsible innovation that considers ethical implications from the start rather than as an afterthought.

AI should enhance human decision-making, not replace it. Through continuous UX research focused not just on usability but on broader human impact, we can ensure AI-driven experiences remain ethical, inclusive, user-friendly, and truly beneficial.

The most successful AI implementations will be those that augment human capabilities while respecting human autonomy, providing assistance without creating dependency, offering personalization without compromising privacy, and enhancing experiences without reinforcing biases.

A Product Owner's Responsibility: Leading the Charge for Ethical AI

As UX professionals, we have both the opportunity and responsibility to shape how AI is integrated into the products people use daily. This requires us to:

  • Advocate for ethical considerations in product requirements and design processes
  • Develop new research methods specifically designed to evaluate AI ethics
  • Collaborate across disciplines with data scientists, ethicists, and domain experts
  • Educate stakeholders about the importance of ethical AI design
  • Amplify diverse perspectives in all stages of AI development

By embracing these responsibilities, we can help ensure that AI serves as a force for positive change in user experience enhancing human capabilities while respecting human values, autonomy, and diversity.

The future of AI in UX isn't just about what's technologically possible; it's about what's ethically responsible. Through thoughtful research, inclusive design practices, and a commitment to human-centered values, we can navigate this complex landscape and create AI experiences that truly benefit everyone.

Learn more
1 min read

When Personalization Gets Personal: Balancing AI with Human-Centered Design

AI-driven personalization is redefining digital experiences, allowing companies to tailor content, recommendations, and interfaces to individual users at an unprecedented scale. From e-commerce product suggestions to content feeds, streaming recommendations, and even customized user interfaces, personalization has become a cornerstone of modern digital strategy. The appeal is clear: research shows that effective personalization can increase engagement by 72%, boost conversion rates by up to 30%, and drive revenue growth of 10-15%.

However, the reality often falls short of these impressive statistics. Personalization can easily backfire, frustrating users instead of engaging them, creating experiences that feel invasive rather than helpful, and sometimes actively driving users away from the very content or products they might genuinely enjoy. Many organizations invest heavily in AI technology while underinvesting in understanding how these personalized experiences actually impact their users.

The Widening Gap Between Capability and Quality

The technical capability to personalize digital experiences has advanced rapidly, but the quality of these experiences hasn't always kept pace. According to a 2023 survey by Baymard Institute, 68% of users reported encountering personalization that felt "off-putting" or "frustrating" in the previous month, while only 34% could recall a personalized experience that genuinely improved their interaction with a digital product.

This disconnect stems from a fundamental misalignment: while AI excels at pattern recognition and prediction based on historical data, it often lacks the contextual understanding and nuance that make personalization truly valuable. The result? Technically sophisticated personalization regularly misses the mark on actual user needs and preferences.

The Pitfalls of AI-Driven Personalization

Many companies struggle with personalization due to several common pitfalls that undermine even the most sophisticated AI implementations:

Over-Personalization: When Helpful Becomes Restrictive

AI that assumes too much can make users feel restricted or trapped in a "filter bubble" of limited options. This phenomenon, often called "over-personalization," occurs when algorithms become too confident in their understanding of user preferences.

Signs of over-personalization include:

  • Content feeds that become increasingly homogeneous over time
  • Disappearing options that might interest users but don't match their history
  • User frustration at being unable to discover new content or products
  • Decreased engagement as experiences become predictable and stale

A study by researchers at University of Minnesota found that highly personalized news feeds led to a 23% reduction in content diversity over time, even when users actively sought varied content. This "filter bubble" effect not only limits discovery but can leave users feeling manipulated or constrained.

Incorrect Assumptions: When Data Tells the Wrong Story

AI recommendations based on incomplete or misinterpreted data can lead to irrelevant, inappropriate, or even offensive suggestions. These incorrect assumptions often stem from:

  • Limited data points that don't capture the full context of user behavior
  • Misinterpreting casual interest as strong preference
  • Failing to distinguish between the user's behavior and actions taken on behalf of others
  • Not recognizing temporary or situational needs versus ongoing preferences

These misinterpretations can range from merely annoying (continuously recommending products similar to a one-time purchase) to deeply problematic (showing weight loss ads to users with eating disorders based on their browsing history).

A particularly striking example occurred when a major retailer's algorithm began sending pregnancy-related offers to a teenage girl before her family knew she was pregnant. While technically accurate in its prediction, this incident highlights how even "correct" personalization can fail to consider the broader human context and implications.

Lack of Transparency: The Black Box Problem

Users increasingly want to understand why they're being shown specific content or recommendations. When personalization happens behind a "black box" without explanation, it can create:

  • Distrust in the system and the brand behind it
  • Confusion about how to influence or improve recommendations
  • Feelings of being manipulated rather than assisted
  • Concerns about what personal data is being used and how

Research from the Pew Research Center shows that 74% of users consider it important to know why they are seeing certain recommendations, yet only 22% of personalization systems provide clear explanations for their suggestions.

Inconsistent Experiences Across Channels

Many organizations struggle to maintain consistent personalization across different touchpoints, creating disjointed experiences:

  • Product recommendations that vary wildly between web and mobile
  • Personalization that doesn't account for previous customer service interactions
  • Different personalization strategies across email, website, and app experiences
  • Recommendations that don't adapt to the user's current context or device

This inconsistency can make personalization feel random or arbitrary rather than thoughtfully tailored to the user's needs.

Neglecting Privacy Concerns and Control

As personalization becomes more sophisticated, user concerns about privacy intensify. Key issues include:

  • Collecting more data than necessary for effective personalization
  • Lack of user control over what information influences their experience
  • Unclear opt-out mechanisms for personalization features
  • Personalization that reveals sensitive information to others

A recent study found that 79% of users want control over what personal data influences their recommendations, but only 31% felt they had adequate control in their most-used digital products.

How Product Managers Can Leverage UX Insight for Better AI Personalization

To create a personalized experience that feels natural and helpful rather than creepy or restrictive, UX teams need to validate AI-driven decisions through systematic research with real users. Rather than treating personalization as a purely technical challenge, successful organizations recognize it as a human-centered design problem that requires continuous testing and refinement.

Understanding User Mental Models Through Card Sorting & Tree Testing

Card sorting and tree testing help structure content in a way that aligns with users' expectations and mental models, creating a foundation for personalization that feels intuitive rather than imposed:

  • Open and Closed Card Sorting – Helps understand how different user segments naturally categorize content, products, or features, providing a baseline for personalization strategies
  • Tree Testing – Validates whether personalized navigation structures work for different user types and contexts
  • Hybrid Approaches – Combining card sorting with interviews to understand not just how users categorize items, but why they do so

Case Study: A financial services company used card sorting with different customer segments to discover distinct mental models for organizing financial products. Rather than creating a one-size-fits-all personalization system, they developed segment-specific personalization frameworks that aligned with these different mental models, resulting in a 28% increase in product discovery and application rates.

Validating Interaction Patterns Through First-Click Testing

First-click testing ensures users interact with personalized experiences as intended across different contexts and scenarios:

  • Testing how users respond to personalized elements vs. standard content
  • Evaluating whether personalization cues (like "Recommended for you") influence click behavior
  • Comparing how different user segments respond to the same personalization approaches
  • Identifying potential confusion points in personalized interfaces

Research by the Nielsen Norman Group found that getting the first click right increases the overall task success rate by 87%. For personalized experiences, this is even more critical, as users may abandon a site entirely if early personalized recommendations seem irrelevant or confusing.

Gathering Qualitative Insights Through User Interviews & Usability Testing

Direct observation and conversation with users provides critical context for personalization strategies:

  • Moderated Usability Testing – Reveals how users react to personalized elements in real-time
  • Think-Aloud Protocols – Help understand users' expectations and reactions to personalization
  • Longitudinal Studies – Track how perceptions of personalization change over time and repeated use
  • Contextual Inquiry – Observes how personalization fits into users' broader goals and environments

These qualitative approaches help answer critical questions like:

  • When does personalization feel helpful versus intrusive?
  • What level of explanation do users want for recommendations?
  • How do different user segments react to similar personalization strategies?
  • What control do users expect over their personalized experience?

Measuring Sentiment Through Surveys & User Feedback

Systematic feedback collection helps gauge users' comfort levels with AI-driven recommendations:

  • Targeted Microsurveys – Quick pulse checks after personalized interactions
  • Preference Centers – Direct input mechanisms for refining personalization
  • Satisfaction Tracking – Monitoring how personalization affects overall satisfaction metrics
  • Feature-Specific Feedback – Gathering input on specific personalization features

A streaming service discovered through targeted surveys that users were significantly more satisfied with content recommendations when they could see a clear explanation of why items were suggested (e.g., "Because you watched X"). Implementing these explanations increased content exploration by 34% and reduced account cancellations by 8%.

A/B Testing Personalization Approaches

Experimental validation ensures personalization actually improves key metrics:

  • Testing different levels of personalization intensity
  • Comparing explicit versus implicit personalization methods
  • Evaluating various approaches to explaining recommendations
  • Measuring the impact of personalization on both short and long-term engagement

Importantly, A/B testing should look beyond immediate conversion metrics to consider longer-term impacts on user satisfaction, trust, and retention.

Building a User-Centered Personalization Strategy That Works

To implement personalization that truly enhances user experience, organizations should follow these research-backed principles:

1. Start with User Needs, Not Technical Capabilities

The most effective personalization addresses genuine user needs rather than showcasing algorithmic sophistication:

  • Identify specific pain points that personalization could solve
  • Understand which aspects of your product would benefit most from personalization
  • Determine where users already expect or desire personalized experiences
  • Recognize which elements should remain consistent for all users

2. Implement Transparent Personalization

Users increasingly expect to understand and control how their experiences are personalized:

  • Clearly communicate what aspects of the experience are personalized
  • Explain the primary factors influencing recommendations
  • Provide simple mechanisms for users to adjust or reset their personalization
  • Consider making personalization opt-in for sensitive domains

3. Design for Serendipity and Discovery

Effective personalization balances predictability with discovery:

  • Deliberately introduce variety into recommendations
  • Include "exploration" categories alongside highly targeted suggestions
  • Monitor and prevent increasing homogeneity in personalized feeds over time
  • Allow users to easily branch out beyond their established patterns

4. Apply Progressive Personalization

Rather than immediately implementing highly tailored experiences, consider a gradual approach:

  • Begin with light personalization based on explicit user choices
  • Gradually introduce more sophisticated personalization as users engage
  • Calibrate personalization depth based on relationship strength and context
  • Adjust personalization based on user feedback and behavior

5. Establish Continuous Feedback Loops

Personalization should never be "set and forget":

  • Implement regular evaluation cycles for personalization effectiveness
  • Create easy feedback mechanisms for users to rate recommendations
  • Monitor for signs of over-personalization or filter bubbles
  • Regularly test personalization assumptions with diverse user groups

The Future of Personalization: Human-Centered AI

As AI capabilities continue to advance, the companies that will succeed with personalization won't necessarily be those with the most sophisticated algorithms, but those who best integrate human understanding into their approach. The future of personalization lies in creating systems that:

  • Learn from qualitative human feedback, not just behavioral data
  • Respect the nuance and complexity of human preferences
  • Maintain transparency in how personalization works
  • Empower users with appropriate control
  • Balance algorithm-driven efficiency with human-centered design principles

AI should learn from real people, not just data. UX research ensures that personalization enhances, rather than alienates, users by bringing human insight to algorithmic decisions.

By combining the pattern-recognition power of AI with the contextual understanding provided by UX research, organizations can create personalized experiences that feel less like surveillance and more like genuine understanding: experiences that don't just predict what users might click, but truly respond to what they need and value.

Learn more
1 min read

Addressing AI Bias in UX: How to Build Fairer Digital Experiences

The Growing Challenge of AI Bias in Digital Products

AI is rapidly reshaping our digital landscape, powering everything from recommendation engines to automated customer service and content creation tools. But as these technologies become more widespread, we're facing a significant challenge: AI bias. When AI systems are trained on biased data, they end up reinforcing stereotypes, excluding marginalized groups, and creating inequitable digital experiences that harm both users and businesses.

This isn't just theoretical, we're seeing real-world consequences. Biased AI has led to resume screening tools that favor male candidates, facial recognition systems that perform poorly on darker skin tones, and language models that perpetuate harmful stereotypes. As AI becomes more deeply integrated into our digital experiences, addressing these biases isn't just an ethical imperative t's essential for creating products that truly work for everyone.

Why Does AI Bias Matter for UX?

For those of us in UX and product teams, AI bias isn't just an ethical issue it directly impacts usability, adoption, and trust. Research has shown that biased AI can result in discriminatory hiring algorithms, skewed facial recognition software, and search engines that reinforce societal prejudices (Buolamwini & Gebru, 2018).

When AI is applied to UX, these biases show up in several ways:

  • Navigation structures that favor certain user behaviors
  • Chatbots that struggle to recognize diverse dialects or cultural expressions
  • Recommendation engines that create "filter bubbles" 
  • Personalization algorithms that make incorrect assumptions 

These biases create real barriers that exclude users, diminish trust, and ultimately limit how effective our products can be. A 2022 study by the Pew Research Center found that 63% of Americans are concerned about algorithmic decision-making, with those concerns highest among groups that have historically faced discrimination.

The Root Causes of AI Bias

To tackle AI bias effectively, we need to understand where it comes from:

1. Biased Training Data

AI models learn from the data we feed them. If that data reflects historical inequities or lacks diversity, the AI will inevitably perpetuate these patterns. Think about a language model trained primarily on text written by and about men,  it's going to struggle to represent women's experiences accurately.

2. Lack of Diversity in Development Teams

When our AI and product teams lack diversity, blind spots naturally emerge. Teams that are homogeneous in background, experience, and perspective are simply less likely to spot potential biases or consider the needs of users unlike themselves.

3. Insufficient Testing Across Diverse User Groups

Without thorough testing across diverse populations, biases often go undetected until after launch when the damage to trust and user experience has already occurred.

How UX Research Can Mitigate AI Bias

At Optimal, we believe that continuous, human-centered research is key to designing fair and inclusive AI-driven experiences. Good UX research helps ensure AI-driven products remain unbiased and effective by:

Ensuring Diverse Representation

Conducting usability tests with participants from varied backgrounds helps prevent exclusionary patterns. This means:

  • Recruiting research participants who truly reflect the full diversity of your user base
  • Paying special attention to traditionally underrepresented groups
  • Creating safe spaces where participants feel comfortable sharing their authentic experiences
  • Analyzing results with an intersectional lens, looking at how different aspects of identity affect user experiences

Establishing Bias Monitoring Systems

Product owners can create ongoing monitoring systems to detect bias:

  • Develop dashboards that track key metrics broken down by user demographics
  • Schedule regular bias audits of AI-powered features
  • Set clear thresholds for when disparities require intervention
  • Make it easy for users to report perceived bias through simple feedback mechanisms

Advocating for Ethical AI Practices

Product owners are in a unique position to advocate for ethical AI development:

  • Push for transparency in how AI makes decisions that affect users
  • Champion features that help users understand AI recommendations
  • Work with data scientists to develop success metrics that consider equity, not just efficiency
  • Promote inclusive design principles throughout the entire product development lifecycle

The Future of AI and Inclusive UX

As AI becomes more sophisticated and pervasive, the role of customer insight and UX in ensuring fairness will only grow in importance. By combining AI's efficiency with human insight, we can ensure that AI-driven products are not just smart but also fair, accessible, and truly user-friendly for everyone. The question isn't whether we can afford to invest in this work, it's whether we can afford not to.

No results found.

Please try different keywords.

Subscribe to OW blog for an instantly better inbox

Thanks for subscribing!
Oops! Something went wrong while submitting the form.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.