Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Prototype Testing

Learn more
1 min read

Welcome to our latest addition: Prototype testing 🐣

Today, we’re thrilled to announce the arrival of the latest member of the Optimal family:  Prototype Testing! This exciting and much-requested new tool allows you to test designs early and often with users to gather fast insights, and make confident design decisions to create more intuitive and user-friendly digital experiences. 

Optimal gives you tools you need to easily build a prototype to test using images and screens and creating clickable areas, or you can import a prototype from Figma and get testing. The first iteration of prototype testing is an open beta, and we’ll be working closely with our customers and community to gather feedback and ideas for further improvements in the months to come.

When to use prototype testing 

Prototype testing is a great way to validate design ideas, identify usability issues, and gather feedback from users before investing too heavily in the development of products, websites, and apps. To further inform your insights, it’s a good idea to include sentiment questions or rating scales alongside your tasks.

Early in the design process: Test initial ideas and concepts to gauge user reactions and feelings about your conceptual solutions. 

Iterative design phases: Continuously test and refine prototypes as you make changes and improvements to the designs. 

Before major milestones: Validate designs before key project stages, such as stakeholder reviews or final approvals.

Usability Testing: Conduct summative research to assess a design's overall performance and gauge real user feedback to guide future design decisions and enhancements.

How it works 🧑🏽‍💻

No existing prototype? No problem. We've made it easy to create one right within Optimal. Here's how:

  1. Import your visuals

Start by uploading a series of screenshots or images that represent your design flow. These will form the backbone of your prototype.

  1. Create interactive elements

Once your visuals are in place, it's time to bring them to life. Use our intuitive interface to designate clickable areas on each screen. These will act as navigation points for your test participants.

  1. Set up the flow

Connect your screens in a logical sequence, mirroring the user journey you want to test. This creates a seamless, interactive experience for your participants.

  1. Preview and refine

Before launching your study, take a moment to walk through your prototype. Ensure all clickable areas work as intended and the flow feels natural.

The result? A fully functional prototype that looks and feels like a real digital product. Your test participants will be able to navigate through it just as they would a live website or app, providing you with authentic, actionable insights.

By empowering you to build prototypes from scratch, we're removing barriers to early-stage testing. This means you can validate ideas faster, iterate with confidence, and ultimately deliver better digital experiences.

Or…import your prototypes directly from Figma 

There’s a bit of housekeeping you’ll need to do in Figma in order to provide your participants with the best testing experience and not impact loading times of the prototype. You can import a link to your Figma prototype into your study,  and it will carry across all the interactions you have set up. You’ll need to make sure your Figma presentation mode is made public in order to share the file with participants. If you make any updates to your Figma file, you can sync the changes in just one click. 

Help Article: Find out more about how to set up your Figma file for testing

How to create tasks 🧰

When you set up your study, you’ll create tasks for participants to complete. 

There are two different ways to build tasks in your prototype tests. You can set a correct destination by adding a start screen and a correct destination screen. That way, you can watch how participants navigate your design to find their way to the correct destination. Another option is to set a correct pathway and evaluate how participants navigate a product, app, or website based on the pathway sequence you set. You can add as many pathways or destinations as you like. 

Adding post-task questions is a great way to help gather qualitative feedback on the user's experience, capturing their thoughts, feelings, and perceptions.

Help Article: Find out how to analyze your results

Prototype testing analysis and metrics 📊

Prototype testing offers a variety of analysis options and metrics to evaluate the effectiveness and usability of your design.  By using these analysis options and metrics, you can get comprehensive insights into your prototype's performance, identify areas for improvement, and make informed design decisions:

Task results 

The task results provide a deep analysis at a task level, including the success score, directness score, time taken, misclicks, and the breakdown of the task's success and failure. They provide great insight into the usability of your design to achieve a task. 

  • Success score tells you the total percentage of participants who reached the correct destination or pathway that you defined for this task. It’s a good indicator of a prototype's usability. 
  • Directness score is the total completed results minus the ‘indirect’ results.
  • A path is ‘indirect’ when a participant backtracks, viewing the same page multiple times, or if they nominate the correct destination but don’t follow the correct pathway
  • Time taken is how long it took a participant to complete your task and can be a good indicator of how easy or difficult it was to complete. 
  • Misclicks measure the total number of clicks made on areas of your prototype that weren’t clickable, clicks that didn’t result in a page change.

Clickmaps

Clickmaps provide an aggregate view of user interactions with prototypes, visualizing click patterns to reveal how users navigate and locate information. They display hits and misses on designated clickable areas, average task completion times, and heatmaps showing where users believed the next steps to be. Filters for first, second, and third page visits allow analysis of user behavior over time, including how they adapt when backtracking. This comprehensive data helps designers understand user navigation patterns and improve prototype usability.

Participant paths 

The Paths tab in Optimal provides a powerful visualization to understand and identify common navigation patterns and potential obstacles participants encounter while completing tasks. You can include thumbnails of your screens to enhance your analysis, making it easier to pinpoint where users may face difficulties or where common paths occured.

Coming soon to prototyping 🔮

Later this year, we’re running a closed beta for video recording with prototype testing. This feature captures behaviors and insights not evident in click data alone. The browser-based recording requires no plugins, simplifying setup. Consent for recording is obtained at the start of the testing process and can be customized to align with your organization's policies. This new feature will provide deeper insights into user experience and prototype usability.

These enhancements to prototype testing offer a comprehensive toolkit for user experience analysis. By combining quantitative click data with qualitative video insights, designers and researchers can gain a more nuanced understanding of user behavior, leading to more informed decisions and improved product designs.

Start prototype testing today

Learn more
1 min read

Using paper prototypes in UX

In UX research we are told again and again that to ensure truly user-centered design, it’s important to test ideas with real users as early as possible. There are many benefits that come from introducing the voice of the people you are designing for in the early stages of the design process. The more feedback you have to work with, the more you can inform your design to align with real needs and expectations. In turn, this leads to better experiences that are more likely to succeed in the real world.It is not surprising then that paper prototypes have become a popular tool used among researchers. They allow ideas to be tested as they emerge, and can inform initial designs before putting in the hard yards of building the real thing. It would seem that they’re almost a no-brainer for researchers, but just like anything out there, along with all the praise, they have also received a fair share of criticism, so let’s explore paper prototypes a little further.

What’s a paper prototype anyway? 🧐📖

Paper prototyping is a simple usability testing technique designed to test interfaces quickly and cheaply. A paper prototype is nothing more than a visual representation of what an interface could look like on a piece of paper (or even a whiteboard or chalkboard). Unlike high-fidelity prototypes that allow for digital interactions to take place, paper prototypes are considered to be low-fidelity, in that they don’t allow direct user interaction. They can also range in sophistication, from a simple sketch using a pen and paper to simulate an interface, through to using designing or publishing software to create a more polished experience with additional visual elements.

Screen Shot 2016-04-15 at 9.26.30 AM
Different ways of designing paper prototypes, using OptimalSort as an example

Showing a research participant a paper prototype is far from the real deal, but it can provide useful insights into how users may expect to interact with specific features and what makes sense to them from a basic, user-centered perspective. There are some mixed attitudes towards paper prototypes among the UX community, so before we make any distinct judgements, let's weigh up their pros and cons.

Advantages 🏆

  • They’re cheap and fastPen and paper, a basic word document, Photoshop. With a paper prototype, you can take an idea and transform it into a low-fidelity (but workable) testing solution very quickly, without having to write code or use sophisticated tools. This is especially beneficial to researchers who work with tight budgets, and don’t have the time or resources to design an elaborate user testing plan.
  • Anyone can do itPaper prototypes allow you to test designs without having to involve multiple roles in building them. Developers can take a back seat as you test initial ideas, before any code work begins.
  • They encourage creativityFrom both the product teams participating in their design, but also from the users. They require the user to employ their imagination, and give them the opportunity express their thoughts and ideas on what improvements can be made. Because they look unfinished, they naturally invite constructive criticism and feedback.
  • They help minimize your chances of failurePaper prototypes and user-centered design go hand in hand. Introducing real people into your design as early as possible can help verify whether you are on the right track, and generate feedback that may give you a good idea of whether your idea is likely to succeed or not.

Disadvantages 😬

  • They’re not as polished as interactive prototypesIf executed poorly, paper prototypes can appear unprofessional and haphazard. They lack the richness of an interactive experience, and if our users are not well informed when coming in for a testing session, they may be surprised to be testing digital experiences on pieces of paper.
  • The interaction is limitedDigital experiences can contain animations and interactions that can’t be replicated on paper. It can be difficult for a user to fully understand an interface when these elements are absent, and of course, the closer the interaction mimics the final product, the more reliable our findings will be.
  • They require facilitationWith an interactive prototype you can assign your user tasks to complete and observe how they interact with the interface. Paper prototypes, however, require continuous guidance from a moderator in communicating next steps and ensuring participants understand the task at hand.
  • Their results have to be interpreted carefullyPaper prototypes can’t emulate the final experience entirely. It is important to interpret their findings while keeping their limitations in mind. Although they can help minimize your chances of failure, they can’t guarantee that your final product will be a success. There are factors that determine success that cannot be captured on a piece of paper, and positive feedback at the prototyping stage does not necessarily equate to a well-received product further down the track.

Improving the interface of card sorting, one prototype at a time 💡

We recently embarked on a research project looking at the user interface of our card-sorting tool, OptimalSort. Our research has two main objectives — first of all to benchmark the current experience on laptops and tablets and identify ways in which we can improve the current interface. The second objective is to look at how we can improve the experience of card sorting on a mobile phone.

Rather than replicating the desktop experience on a smaller screen, we want to create an intuitive experience for mobiles, ensuring we maintain the quality of data collected across devices.Our current mobile experience is a scaled down version of the desktop and still has room for improvement, but despite that, 9 per cent of our users utilize the app. We decided to start from the ground up and test an entirely new design using paper prototypes. In the spirit of testing early and often, we decided to jump right into testing sessions with real users. In our first testing sprint, we asked participants to take part in two tasks. The first was to perform an open or closed card sort on a laptop or tablet. The second task involved using paper prototypes to see how people would respond to the same experience on a mobile phone.

blog_artwork_01-03

Context is everything 🎯

What did we find? In the context of our research project, paper prototypes worked remarkably well. We were somewhat apprehensive at first, trying to figure out the exact flow of the experience and whether the people coming into our office would get it. As it turns out, people are clever, and even those with limited experience using a smartphone were able to navigate and identify areas for improvement just as easily as anyone else. Some participants even said they prefered the experience of testing paper prototypes over a laptop. In an effort to make our prototype-based tasks easy to understand and easy to explain to our participants, we reduced the full card sort to a few key interactions, minimizing the number of branches in the UI flow.

This could explain a preference for the mobile task, where we only asked participants to sort through a handful of cards, as opposed to a whole set.The main thing we found was that no matter how well you plan your test, paper prototypes require you to be flexible in adapting the flow of your session to however your user responds. We accepted that deviating from our original plan was something we had to embrace, and in the end these additional conversations with our participants helped us generate insights above and beyond the basics we aimed to address. We now have a whole range of feedback that we can utilize in making more sophisticated, interactive prototypes.

Whether our success with using paper prototypes was determined by the specific setup of our testing sessions, or simply by their pure usefulness as a research technique is hard to tell. By first performing a card sorting task on a laptop or tablet, our participants approached the paper prototype with an understanding of what exactly a card sort required. Therefore there is no guarantee that we would have achieved the same level of success in testing paper prototypes on their own. What this does demonstrate, however, is that paper prototyping is heavily dependent on the context of your assessment.

Final thoughts 💬

Paper prototypes are not guaranteed to work for everybody. If you’re designing an entirely new experience and trying to describe something complex in an abstracted form on paper, people may struggle to comprehend your idea. Even a careful explanation doesn’t guarantee that it will be fully understood by the user. Should this stop you from testing out the usefulness of paper prototypes in the context of your project? Absolutely not.

In a perfect world we’d test high fidelity interactive prototypes that resemble the real deal as closely as possible, every step of the way. However, if we look at testing from a practical perspective, before we can fully test sophisticated designs, paper prototypes provide a great solution for generating initial feedback.In his article criticizing the use of paper prototypes, Jake Knapp makes the point that when we show customers a paper prototype we’re inviting feedback, not reactions. What we found in our research however, was quite the opposite.

In our sessions, participants voiced their expectations and understanding of what actions were possible at each stage, without us having to probe specifically for feedback. Sure we also received general comments on icon or colour preferences, but for the most part our users gave us insights into what they felt throughout the experience, in addition to what they thought.

Further reading 🧠

Learn more
1 min read

Optimal vs. Maze: Deep User Insights or Surface-Level Design Feedback

Product teams face an important decision when selecting the right user research platform: do they prioritize speed and simplicity, or invest in a more comprehensive platform that offers real research depth and insights? This choice becomes even more critical as user research scales and those insights directly influence major product decisions.

Maze has gained popularity in recent years among design and product teams for its focus on rapid prototype testing and design workflow integration. However, as teams scale their research programs and require more sophisticated insights, many discover that Maze's limitations outweigh its simplicity. Platform stability issues, restricted tools and functionality, and a lack of enterprise features creates friction that end up compromising insight speed, quality and overall business impact.

Why Choose Optimal instead of Maze?

Platform Depth

Test Design Limitations

  • Maze has Rigid Question Types: Maze's focus on speed comes with design inflexibility, including rigid question structures and limited customization options that reduce overall test effectiveness.
  • Optimal Offers Comprehensive Test Flexibility: Optimal has a Figma integration, image import capabilities, and fully customizable test flows designed for agile product teams.

Prototype Testing Capabilities

  • Maze has Limited Prototype Support: Users report difficulties with Maze's prototype testing capabilities, particularly with complex interactions and advanced design systems that modern products require.
  • Optimal has Advanced Prototype Testing: Optimal supports sophisticated prototype testing with full Figma integration, comprehensive interaction capture, and flexible testing methods that accommodate modern product design and development workflows.

Analysis and Reporting Quality

  • Maze Only Offers Surface-Level Reporting: Maze provides basic metrics and surface-level analysis without the depth required for strategic decision-making or comprehensive user insight.
  • Optimal has Rich, Actionable Insights: Optimal delivers AI-powered analysis with layered insights, export-ready reports, and sophisticated visualizations that transform data into actionable business intelligence.

Enterprise Features

  • Maze has a Reactive Support Model: Maze provides responsive support primarily for critical issues but lacks the proactive, dedicated support enterprise product teams require.
  • Optimal Provides Dedicated Enterprise Support: Optimal offers fast, personalized support with dedicated account teams and comprehensive training resources built by user experience experts that ensure your team is set up for success.

Enterprise Readiness

  • Maze is Buit for Individuals: Maze was built primarily for individual designers and small teams, lacking the enterprise features, compliance capabilities, and scalability that large organizations need.
  • Optimal is an Enterprise-Built Platform: Optimal was designed for enterprise use with comprehensive security protocols, compliance certifications, and scalability features that support large research programs across multiple teams and business units. Optimal is currently trusted by some of the world’s biggest brands including Netflix, Lego and Nike. 

Enterprises Need Reliable, Scalable User Insights

While Maze's focus on speed appeals to design teams seeking rapid iteration, enterprise product teams need the stability and reliability that only mature platforms provide. Optimal delivers both speed and dependability, enabling teams to iterate quickly without compromising research quality or business impact.Platform reliability isn't just about uptime, it's about helping product teams make high quality strategic decisions and to build organizational confidence in user insights. Mature product, design and UX teams need to choose platforms that enhance rather than undermine their research credibility.

Don't let platform limitations compromise your research potential.

Ready to see how leading brands including Lego, Netflix and Nike achieve better research outcomes? Experience how Optimal's platform delivers user insights that adapt to your team's growing needs.

Learn more
1 min read

AI Innovation + Human Validation: Why It Matters

AI creates beautiful designs, but only humans can validate if they work

Let's talk about something that's fundamentally reshaping product development: AI-generated designs. It's not just a trendy tool; it's a complete transformation of the design workflow as we know it.

Today's AI design tools aren't just creating mockups, they're generating entire design systems, producing variations at scale, and predicting user preferences before you've even finished your prompt. Instead of spending hours on iterations, designers are exploring dozens of directions in minutes.

This is where platforms like Lovable shine with their vibe coding approach, generating design directions based on emotional and aesthetic inputs rather than just functional requirements, and while this AI-powered innovation is impressive, it raises a critical question for everyone creating digital products: How do we ensure these AI-generated designs actually resonate with real people?

The Gap Between AI Efficiency and Human Connection

The design process has fundamentally shifted. Instead of building from scratch, designers are prompting and curating. Rather than crafting each pixel, they're directing AI to explore design spaces.

The whole interaction feels more experimental. Designers are using natural language to describe desired outcomes, and the AI responses feel like collaborative explorations rather than final deliverables.

This shift has major implications for product teams:

  • If you're a product manager, you need to balance AI efficiency with proven user validation methods to ensure designs solve actual user problems.
  • UX designers, you're now curating and refining AI outputs. When AI generates interfaces, will real users understand how to use them?
  • Visual designers, your expertise is evolving. You need to develop prompting skills while maintaining your critical eye for what actually works.
  • And UX researchers, there's an urgent need to validate AI-generated designs with real human feedback before implementation.

The Future of Design: AI Innovation + Human Validation

As AI design tools become more powerful, the teams that thrive will be those who balance technological innovation with human understanding. The winning approach isn't AI alone or human-only design, it's the thoughtful integration of both.

Why Human Validation Is Essential for AI-Generated Designs

AI is revolutionizing design creation, but it has inherent limitations that only human validation can address:

  • AI Lacks Contextual Understanding While AI can generate visually impressive designs, it doesn't truly understand cultural nuances, emotional responses, or lived experiences of your users. Only human feedback can verify whether an AI-generated interface feels intuitive rather than just looking good.
  • The "Uncanny Valley" of AI Design AI-generated designs sometimes create an "almost right but slightly off" feeling, technically correct but missing the human touch. Real user testing helps identify these subtle disconnects that might otherwise go unnoticed by design teams.
  • AI Reinforces Patterns, Not Breakthroughs AI models are trained on existing design patterns, meaning they excel at iteration but struggle with true innovation. Human validation helps identify when AI-generated designs feel derivative versus when they create genuine emotional connections with users.
  • Diverse User Needs Require Human Insight AI may not account for accessibility considerations, cultural sensitivities, or edge cases without explicit prompting. Human validation ensures designs work for your entire audience, not just the statistical average.

The Multiplier Effect: Why AI + Human Validation Outperforms Either Approach Alone

The combination of AI-powered design and human validation creates a virtuous cycle that elevates both:

  • From Rapid Iteration to Deeper Insights AI allows teams to test more design variations than ever before, gathering richer comparative data through human testing. This breadth of exploration was previously impossible with human-only design processes.
  • Continuous Learning Loop Human validation of AI designs creates feedback that improves future AI prompts. Over time, this creates a compounding advantage where AI tools become increasingly aligned with real user preferences.
  • Scale + Depth AI provides the scale to generate numerous options, while human validation provides the depth of understanding required to select the right ones. This combination addresses both the breadth and depth dimensions of effective design.

At Optimal, we're committed to helping you navigate this new landscape by providing the tools you need to ensure AI-generated designs truly resonate with the humans who will use them. Our human validation platform is the essential complement to AI's creative potential, turning promising designs into proven experiences.

Introducing the Optimal + Lovable Integration: Bridging AI Innovation with Human Validation

At Optimal, we've always believed in the power of human feedback to create truly effective designs. Now, with our new Lovable integration, we're making it easier than ever to validate AI-generated designs with real users.

Here's how our integrated approach works:

1. Generate Innovative Designs with Lovable

Lovable allows you to:

  • Explore emotional dimensions of design through AI prompting
  • Generate multiple design variations in minutes
  • Create interfaces that feel aligned with your brand's emotional targets

2. Validate Those Designs with Optimal

Interactive Prototype Testing Our integration lets you import Lovable designs directly as interactive prototypes, allowing users to click, navigate, and experience your AI-generated interfaces in a realistic environment. This reveals critical insights about how users naturally interact with your design.

Ready to Transform Your Design Process?

Try our Optimal + Lovable integration today and experience the power of combining AI innovation with human validation. Your first study is on us! See firsthand how real user feedback can elevate your AI-generated designs from interesting to truly effective.

Try the Optimal + Lovable Integration today

No results found.

Please try different keywords.

Subscribe to OW blog for an instantly better inbox

Thanks for subscribing!
Oops! Something went wrong while submitting the form.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.