2

Optimal vs. Maze: Deep User Insights or Surface-Level Design Feedback

Product teams face an important decision when selecting the right user research platform: do they prioritize speed and simplicity, or invest in a more comprehensive platform that offers real research depth and insights? This choice becomes even more critical as user research scales and those insights directly influence major product decisions.

Maze has gained popularity in recent years among design and product teams for its focus on rapid prototype testing and design workflow integration. However, as teams scale their research programs and require more sophisticated insights, many discover that Maze's limitations outweigh its simplicity. Platform stability issues, restricted tools and functionality, and a lack of enterprise features creates friction that end up compromising insight speed, quality and overall business impact.

Why Choose Optimal instead of Maze?

Platform Depth

Test Design Flexibility

Optimal Offers Comprehensive Test Flexibility: Optimal has a Figma integration, image import capabilities, and fully customizable test flows designed for agile product teams.

Maze has Rigid Question Types: In contrast, Maze's focus on speed comes with design inflexibility, including rigid question structures and limited customization options that reduce overall test effectiveness.

Live Site Testing

Optimal Delivers Comprehensive Live Site Testing: Optimal's live site testing allows you to test your actual website or web app in real-time with real users, gathering behavioral data and usability insights post-launch without any code requirements. This enables continuous testing and iteration even after products are in users' hands.

Maze Offers Basic Live Website Testing: While Maze provides live website testing capabilities, its focus remains primarily on unmoderated studies with limited depth for ongoing site optimization.

Interview and Moderated Research Capabilities

Optimal Interviews Transforms Research Analysis: Optimal's new Interviews tool revolutionizes how teams extract insights from user research. Upload interview videos and let AI automatically surface key themes, generate smart highlight reels, create timestamped transcripts, and produce actionable insights in hours instead of weeks. Every insight comes with supporting video evidence, making it easy to back up recommendations with real user feedback and share compelling clips with stakeholders.

Maze Interview Studies Requires Enterprise Plan: Maze's Interview Studies feature for moderated research is only available on their highest-tier Organization plan, putting live moderated sessions out of reach for small and mid-sized teams. Teams on lower tiers must rely solely on unmoderated testing or use separate tools for interviews.

Prototype Testing Capabilities

Optimal has Advanced Prototype Testing: Optimal supports sophisticated prototype testing with full Figma integration, comprehensive interaction capture, and flexible testing methods that accommodate modern product design and development workflows.

Maze has Limited Prototype Support: Users report difficulties with Maze's prototype testing capabilities, particularly with complex interactions and advanced design systems that modern products require.

Analysis and Reporting Quality

Optimal has Rich, Actionable Insights: Optimal delivers AI-powered analysis with layered insights, export-ready reports, and sophisticated visualizations that transform data into actionable business intelligence.

Maze Only Offers Surface-Level Reporting: Maze provides basic metrics and surface-level analysis without the depth required for strategic decision-making or comprehensive user insight.

Enterprise Features

Dedicated Enterprise Support

Optimal Provides Dedicated Enterprise Support: Optimal offers fast, personalized support with dedicated account teams and comprehensive training resources built by user experience experts that ensure your team is set up for success.

Maze has a Reactive Support Model: Maze provides responsive support primarily for critical issues but lacks the proactive, dedicated support enterprise product teams require.

Enterprise Readiness

Optimal is an Enterprise-Built Platform: Optimal was designed for enterprise use with comprehensive security protocols, compliance certifications, and scalability features that support large research programs across multiple teams and business units. Optimal is currently trusted by some of the world's biggest brands including Netflix, Lego and Nike.

Maze is Built for Individuals: Maze was built primarily for individual designers and small teams, lacking the enterprise features, compliance capabilities, and scalability that large organizations need.

Enterprises Need Reliable, Scalable User Insights

While Maze's focus on speed appeals to design teams seeking rapid iteration, enterprise product teams need the stability and reliability that only mature platforms provide. Optimal delivers both speed and dependability, enabling teams to iterate quickly without compromising research quality or business impact. Platform reliability isn't just about uptime, it's about helping product teams make high quality strategic decisions and to build organizational confidence in user insights. Mature product, design and UX teams need to choose platforms that enhance rather than undermine their research credibility.

Don't let platform limitations compromise your research potential.

Ready to see how leading brands including Lego, Netflix and Nike achieve better research outcomes? Experience how Optimal's platform delivers user insights that adapt to your team's growing needs.

Share this article
Author
Optimal
Workshop

Related articles

View all blog articles
Learn more
1 min read

Why Understanding Users Has Never Been Easier...or Harder

Product, design and research teams today are drowning in user data while starving for user understanding. Never before have teams had such access to user information, analytics dashboards, heatmaps, session recordings, survey responses, social media sentiment, support tickets, and endless behavioral data points. Yet despite this volume of data, teams consistently build features users don't want and miss needs hiding in plain sight.

It’s a true paradox for product, design and research teams: more information has made genuine understanding more elusive. 

Because with  all this data, teams feel informed. They can say with confidence: "Users spend 3.2 minutes on this page," "42% abandon at this step," "Power users click here." But what this data doesn't tell you is Why. 

The Difference between Data and Insight

Data tells you what happened. Understanding tells you why it matters.

Here’s a good example of this: Your analytics show that 60% of users abandon a new feature after first use. You know they're leaving. You can see where they click before they go. You have their demographic data and behavioral patterns.

But you don't know:

  • Were they confused or simply uninterested?
  • Did it solve their problem too slowly or not at all?
  • Would they return if one thing changed, or is the entire approach wrong?
  • Are they your target users or the wrong segment entirely?

One team sees "60% abandonment" and adds onboarding tooltips. Another talks to users and discovers the feature solves the wrong problem entirely. Same data, completely different understanding.

Modern tools make it dangerously easy to mistake observation for comprehension, but some aspects of user experience exist beyond measurement:

  • Emotional context, like the frustration of trying to complete a task while handling a crying baby, or the anxiety of making a financial decision without confidence.
  • The unspoken needs of users which can only be demonstrated through real interactions. Users develop workarounds without reporting bugs. They live with friction because they don't know better solutions exist.
  • Cultural nuances that numbers don't capture, like how language choice resonates differently across cultures, or how trust signals vary by context.
  • Data shows what users do within your current product. It doesn't reveal what they'd do if you solved their problems differently to help you identify new opportunities. 

Why Human Empathy is More Important than Ever 

The teams building truly user-centered products haven't abandoned data but they've learned to combine quantitative and qualitative insights. 

  • Combine analytics (what happens), user interviews (why it happens), and observation (context in which it happens).
  • Understanding builds over time. A single study provides a snapshot; continuous engagement reveals the movie.
  • Use data to form theories, research to validate them, and real-world live testing to confirm understanding.
  • Different team members see different aspects. Engineers notice system issues, designers spot usability gaps, PMs identify market fit, researchers uncover needs.

Adding AI into the mix also emphasizes the need for human validation. While AI can help significantly speed up workflows and can augment human expertise, it still requires oversight and review from real people. 

AI can spot trends humans miss, processing millions of data points instantly but it can't understand human emotion, cultural context, or unspoken needs. It can summarize what users say but humans must interpret what they mean.

Understanding users has never been easier from a data perspective. We have tools our predecessors could only dream of.  But understanding users has never been harder from an empathy perspective. The sheer volume of data available to us creates an illusion of knowledge that's more dangerous than ignorance.

The teams succeeding aren't choosing between data and empathy, they're investing equally in both. They use analytics to spot patterns and conversations to understand meaning. They measure behavior and observe context. They quantify outcomes and qualify experiences.

Because at the end of the day, you can track every click, measure every metric, and analyze every behavior, but until you understand why, you're just collecting data, not creating understanding.

Learn more
1 min read

From Projects to Products: A Growing Career Trend

Introduction

The skills market has a familiar whiff to it. A decade ago, digital execs scratched their heads as great swathes of the delivery workforce decided to retrain as User Experience experts. Project Managers and Business Analysts decided to muscle-in on the creative process that designers insisted was their purview alone. Win for systemised thinking. Loss for magic dust and mystery.

With UX, research and design roles being the first to hit the cutting room floor over the past 24 months, a lot of the responsibility to solve for those missing competencies in the product delivery cycle now resides with the T-shaped Product Managers, because their career origin story tends to embrace a broader foundation across delivery and design disciplines. And so, as UX course providers jostle for position in a distracted market, senior professionals are repackaging themselves as Product Managers.

Another Talent Migration? We’ve Seen This Before.

The skills market has a familiar whiff to it. A decade ago, Project Managers (PMs) and Business Analysts (BAs) pivoted into UX roles in their droves, chasing the north star of digital transformation and user-centric design. Now? The same opportunities to pivot are emerging again—this time into Product Management.

And if history is anything to go by, we already know how this plays out.

Between 2015 and 2019, UX job postings skyrocketed by 320%, fueled by digital-first strategies and a newfound corporate obsession with usability. PMs and BAs, sensing the shift, leaned into their adjacent skills—stakeholder management, process mapping, and research—and suddenly, UX wasn’t just for designers anymore. It was a business function.

Fast-forward to 2025, and Product Management is in the same phase of maturation and despite some Covid-led contraction, bouncing back to 5.1% growth. The role has evolved from feature shipping to strategic value creation while traditional project management roles are trending towards full-stack product managers who handle multiple aspects of product development with fractional PMs for part-time or project-based roles.

Why Is This Happening? The Data Tells the Story.

📈 Job postings for product management roles grew by 41% between 2020 and 2025, compared to a 23% decline in traditional project management roles during the same period (Indeed Labor Market Analytics).

📉 The demand for product managers has been growing, with roles increasing by 32% yearly in general terms, as mentioned in some reports.

💰 Salary Shenanigans: Product Managers generally earn higher salaries than Business Analysts. In the U.S., PMs earn about 45% more than BAs on average ($124,000 vs. $85,400). In Australia, PMs earn about 4% to 30% more than BAs ($130,000 vs. $105,000 to $125,000) wave.

Three Structural Forces Driving the Shift

  1. Agile and Product-Led Growth Have Blurred the Lines
    Project success is no longer measured in timelines and budgets—it’s about customer lifetime value (CLTV) and feature adoption rates. For instance, 86% of teams have adopted the Agile approach, and 63% of IT teams are also using Agile methodologies forcing PMs to move beyond execution into continuous iteration and outcome-based thinking.
  2. Data Is the New Currency, and BAs Are Cashing In
    89% of product decisions in 2025 rely on analytics (Gartner, 2024). That’s prime territory for BAs, whose SQL skills, A/B testing expertise, and KPI alignment instincts make them critical players in data-driven product strategy.
  3. Role Consolidation Is Inevitable
    The post-pandemic belt-tightening has left one role doing the job of three. Today’s product managers don’t just prioritise backlogs - they manage stakeholders, interpret data, and (sometimes poorly) sketch out UX wireframes. Product manager job descriptions now list "requirements gathering" and "stakeholder management"—once core PM/BA responsibilities.

How This Mirrors the UX Migration of 2019

Source 1 - Source 2

Same pattern. Different discipline.

The Challenges of Becoming a Product Manager (and Why Some Will Struggle)

👀 Outputs vs. Outcomes – PMs think in deliverables. Transitioning PMs struggle to adjust to measuring success through customer impact instead of project completion.

🛠️ Legacy Tech Debt – Outdated tech stacks can lead to decreased productivity, integration issues, and security concerns. This complexity can slow down operations and hinder the efficiency of teams, including product management.

😰 Imposter Syndrome is Real – New product managers feel unqualified, mirroring the self-doubt UX migrants felt in 2019. Because let’s be honest—jumping into product strategy is a different beast from managing deliverables.

What Comes Next? The Smartest Companies Are Already Preparing.

🏆 Structured Reskilling – Programs like Google’s "PM Launchpad" reduce time-to-proficiency for new PMs. Enterprises that invest in structured career shifts will win the talent war.

📊 Hybrid Role Recognition – Expect to see “Analytics-Driven PM” and “Technical Product Owner” job titles formalising this shift, much like “UX Strategist” emerged post-2019.

🚀 AI Will Accelerate the Next Migration – As AI automates routine PM/BA tasks, expect even more professionals to pivot into strategic product roles. The difference? This time, the transition will be even faster.

Conclusion: The Cycle Continues

Tech talent moves in cycles. Product Management is simply the next career gold rush for systems thinkers with a skill for structure, process, and problem-solving. A structural response to the evolution of tech ecosystems.

Companies that recognise and support this transition will outpace those still clinging to rigid org charts. Because one thing is clear—the talent migration isn’t coming. It’s already here.

This article was researched with the help of Perplexity.ai

Learn more
1 min read

When Personalization Gets Personal: Balancing AI with Human-Centered Design

AI-driven personalization is redefining digital experiences, allowing companies to tailor content, recommendations, and interfaces to individual users at an unprecedented scale. From e-commerce product suggestions to content feeds, streaming recommendations, and even customized user interfaces, personalization has become a cornerstone of modern digital strategy. The appeal is clear: research shows that effective personalization can increase engagement by 72%, boost conversion rates by up to 30%, and drive revenue growth of 10-15%.

However, the reality often falls short of these impressive statistics. Personalization can easily backfire, frustrating users instead of engaging them, creating experiences that feel invasive rather than helpful, and sometimes actively driving users away from the very content or products they might genuinely enjoy. Many organizations invest heavily in AI technology while underinvesting in understanding how these personalized experiences actually impact their users.

The Widening Gap Between Capability and Quality

The technical capability to personalize digital experiences has advanced rapidly, but the quality of these experiences hasn't always kept pace. According to a 2023 survey by Baymard Institute, 68% of users reported encountering personalization that felt "off-putting" or "frustrating" in the previous month, while only 34% could recall a personalized experience that genuinely improved their interaction with a digital product.

This disconnect stems from a fundamental misalignment: while AI excels at pattern recognition and prediction based on historical data, it often lacks the contextual understanding and nuance that make personalization truly valuable. The result? Technically sophisticated personalization regularly misses the mark on actual user needs and preferences.

The Pitfalls of AI-Driven Personalization

Many companies struggle with personalization due to several common pitfalls that undermine even the most sophisticated AI implementations:

Over-Personalization: When Helpful Becomes Restrictive

AI that assumes too much can make users feel restricted or trapped in a "filter bubble" of limited options. This phenomenon, often called "over-personalization," occurs when algorithms become too confident in their understanding of user preferences.

Signs of over-personalization include:

  • Content feeds that become increasingly homogeneous over time
  • Disappearing options that might interest users but don't match their history
  • User frustration at being unable to discover new content or products
  • Decreased engagement as experiences become predictable and stale

A study by researchers at University of Minnesota found that highly personalized news feeds led to a 23% reduction in content diversity over time, even when users actively sought varied content. This "filter bubble" effect not only limits discovery but can leave users feeling manipulated or constrained.

Incorrect Assumptions: When Data Tells the Wrong Story

AI recommendations based on incomplete or misinterpreted data can lead to irrelevant, inappropriate, or even offensive suggestions. These incorrect assumptions often stem from:

  • Limited data points that don't capture the full context of user behavior
  • Misinterpreting casual interest as strong preference
  • Failing to distinguish between the user's behavior and actions taken on behalf of others
  • Not recognizing temporary or situational needs versus ongoing preferences

These misinterpretations can range from merely annoying (continuously recommending products similar to a one-time purchase) to deeply problematic (showing weight loss ads to users with eating disorders based on their browsing history).

A particularly striking example occurred when a major retailer's algorithm began sending pregnancy-related offers to a teenage girl before her family knew she was pregnant. While technically accurate in its prediction, this incident highlights how even "correct" personalization can fail to consider the broader human context and implications.

Lack of Transparency: The Black Box Problem

Users increasingly want to understand why they're being shown specific content or recommendations. When personalization happens behind a "black box" without explanation, it can create:

  • Distrust in the system and the brand behind it
  • Confusion about how to influence or improve recommendations
  • Feelings of being manipulated rather than assisted
  • Concerns about what personal data is being used and how

Research from the Pew Research Center shows that 74% of users consider it important to know why they are seeing certain recommendations, yet only 22% of personalization systems provide clear explanations for their suggestions.

Inconsistent Experiences Across Channels

Many organizations struggle to maintain consistent personalization across different touchpoints, creating disjointed experiences:

  • Product recommendations that vary wildly between web and mobile
  • Personalization that doesn't account for previous customer service interactions
  • Different personalization strategies across email, website, and app experiences
  • Recommendations that don't adapt to the user's current context or device

This inconsistency can make personalization feel random or arbitrary rather than thoughtfully tailored to the user's needs.

Neglecting Privacy Concerns and Control

As personalization becomes more sophisticated, user concerns about privacy intensify. Key issues include:

  • Collecting more data than necessary for effective personalization
  • Lack of user control over what information influences their experience
  • Unclear opt-out mechanisms for personalization features
  • Personalization that reveals sensitive information to others

A recent study found that 79% of users want control over what personal data influences their recommendations, but only 31% felt they had adequate control in their most-used digital products.

How Product Managers Can Leverage UX Insight for Better AI Personalization

To create a personalized experience that feels natural and helpful rather than creepy or restrictive, UX teams need to validate AI-driven decisions through systematic research with real users. Rather than treating personalization as a purely technical challenge, successful organizations recognize it as a human-centered design problem that requires continuous testing and refinement.

Understanding User Mental Models Through Card Sorting & Tree Testing

Card sorting and tree testing help structure content in a way that aligns with users' expectations and mental models, creating a foundation for personalization that feels intuitive rather than imposed:

  • Open and Closed Card Sorting – Helps understand how different user segments naturally categorize content, products, or features, providing a baseline for personalization strategies
  • Tree Testing – Validates whether personalized navigation structures work for different user types and contexts
  • Hybrid Approaches – Combining card sorting with interviews to understand not just how users categorize items, but why they do so

Case Study: A financial services company used card sorting with different customer segments to discover distinct mental models for organizing financial products. Rather than creating a one-size-fits-all personalization system, they developed segment-specific personalization frameworks that aligned with these different mental models, resulting in a 28% increase in product discovery and application rates.

Validating Interaction Patterns Through First-Click Testing

First-click testing ensures users interact with personalized experiences as intended across different contexts and scenarios:

  • Testing how users respond to personalized elements vs. standard content
  • Evaluating whether personalization cues (like "Recommended for you") influence click behavior
  • Comparing how different user segments respond to the same personalization approaches
  • Identifying potential confusion points in personalized interfaces

Research by the Nielsen Norman Group found that getting the first click right increases the overall task success rate by 87%. For personalized experiences, this is even more critical, as users may abandon a site entirely if early personalized recommendations seem irrelevant or confusing.

Gathering Qualitative Insights Through User Interviews & Usability Testing

Direct observation and conversation with users provides critical context for personalization strategies:

  • Moderated Usability Testing – Reveals how users react to personalized elements in real-time
  • Think-Aloud Protocols – Help understand users' expectations and reactions to personalization
  • Longitudinal Studies – Track how perceptions of personalization change over time and repeated use
  • Contextual Inquiry – Observes how personalization fits into users' broader goals and environments

These qualitative approaches help answer critical questions like:

  • When does personalization feel helpful versus intrusive?
  • What level of explanation do users want for recommendations?
  • How do different user segments react to similar personalization strategies?
  • What control do users expect over their personalized experience?

Measuring Sentiment Through Surveys & User Feedback

Systematic feedback collection helps gauge users' comfort levels with AI-driven recommendations:

  • Targeted Microsurveys – Quick pulse checks after personalized interactions
  • Preference Centers – Direct input mechanisms for refining personalization
  • Satisfaction Tracking – Monitoring how personalization affects overall satisfaction metrics
  • Feature-Specific Feedback – Gathering input on specific personalization features

A streaming service discovered through targeted surveys that users were significantly more satisfied with content recommendations when they could see a clear explanation of why items were suggested (e.g., "Because you watched X"). Implementing these explanations increased content exploration by 34% and reduced account cancellations by 8%.

A/B Testing Personalization Approaches

Experimental validation ensures personalization actually improves key metrics:

  • Testing different levels of personalization intensity
  • Comparing explicit versus implicit personalization methods
  • Evaluating various approaches to explaining recommendations
  • Measuring the impact of personalization on both short and long-term engagement

Importantly, A/B testing should look beyond immediate conversion metrics to consider longer-term impacts on user satisfaction, trust, and retention.

Building a User-Centered Personalization Strategy That Works

To implement personalization that truly enhances user experience, organizations should follow these research-backed principles:

1. Start with User Needs, Not Technical Capabilities

The most effective personalization addresses genuine user needs rather than showcasing algorithmic sophistication:

  • Identify specific pain points that personalization could solve
  • Understand which aspects of your product would benefit most from personalization
  • Determine where users already expect or desire personalized experiences
  • Recognize which elements should remain consistent for all users

2. Implement Transparent Personalization

Users increasingly expect to understand and control how their experiences are personalized:

  • Clearly communicate what aspects of the experience are personalized
  • Explain the primary factors influencing recommendations
  • Provide simple mechanisms for users to adjust or reset their personalization
  • Consider making personalization opt-in for sensitive domains

3. Design for Serendipity and Discovery

Effective personalization balances predictability with discovery:

  • Deliberately introduce variety into recommendations
  • Include "exploration" categories alongside highly targeted suggestions
  • Monitor and prevent increasing homogeneity in personalized feeds over time
  • Allow users to easily branch out beyond their established patterns

4. Apply Progressive Personalization

Rather than immediately implementing highly tailored experiences, consider a gradual approach:

  • Begin with light personalization based on explicit user choices
  • Gradually introduce more sophisticated personalization as users engage
  • Calibrate personalization depth based on relationship strength and context
  • Adjust personalization based on user feedback and behavior

5. Establish Continuous Feedback Loops

Personalization should never be "set and forget":

  • Implement regular evaluation cycles for personalization effectiveness
  • Create easy feedback mechanisms for users to rate recommendations
  • Monitor for signs of over-personalization or filter bubbles
  • Regularly test personalization assumptions with diverse user groups

The Future of Personalization: Human-Centered AI

As AI capabilities continue to advance, the companies that will succeed with personalization won't necessarily be those with the most sophisticated algorithms, but those who best integrate human understanding into their approach. The future of personalization lies in creating systems that:

  • Learn from qualitative human feedback, not just behavioral data
  • Respect the nuance and complexity of human preferences
  • Maintain transparency in how personalization works
  • Empower users with appropriate control
  • Balance algorithm-driven efficiency with human-centered design principles

AI should learn from real people, not just data. UX research ensures that personalization enhances, rather than alienates, users by bringing human insight to algorithmic decisions.

By combining the pattern-recognition power of AI with the contextual understanding provided by UX research, organizations can create personalized experiences that feel less like surveillance and more like genuine understanding: experiences that don't just predict what users might click, but truly respond to what they need and value.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.