2

Optimal vs. Maze: Deep User Insights or Surface-Level Design Feedback

Product teams face an important decision when selecting the right user research platform: do they prioritize speed and simplicity, or invest in a more comprehensive platform that offers real research depth? This choice becomes even more critical as user research scales and those insights directly influence major product decisions.

Maze has gained popularity among design and product teams for its focus on rapid prototype testing and design workflow integration. However, as teams scale their research programs and require more sophisticated insights, many discover that Maze's limitations outweigh its simplicity. Platform stability issues, restricted functionality, and a lack of enterprise features create bottlenecks that compromise research quality and overall business impact.

Why Choose Optimal instead of Maze?

Stability vs. Speed

When user insights directly impact product decisions, platform reliability becomes essential. While Maze focuses on rapid iteration, persistent stability issues and limited flexibility make it unsuitable for enterprise user research programs that require consistent and highly trustworthy results.

Platform Depth

Test Design Limitations

  • Maze has Rigid Question Types: Maze's focus on speed comes with design inflexibility, including rigid question structures and limited customization options that reduce overall test effectiveness.
  • Optimal Offers Comprehensive Test Flexibility: Optimal has a Figma integration, image import capabilities, and fully customizable test flows designed for agile product teams.

Prototype Testing Capabilities

  • Maze has Limited Prototype Support: Users report difficulties with Maze's prototype testing capabilities, particularly with complex interactions and advanced design systems that modern products require.
  • Optimal has Advanced Prototype Testing: Optimal supports sophisticated prototype testing with full Figma integration, comprehensive interaction capture, and flexible testing methods that accommodate modern product design and development workflows.

Analysis and Reporting Quality

  • Maze Only Offers Surface-Level Reporting: Maze provides basic metrics and surface-level analysis without the depth required for strategic decision-making or comprehensive user insight.
  • Optimal has Rich, Actionable Insights: Optimal delivers AI-powered analysis with layered insights, export-ready reports, and sophisticated visualizations that transform data into actionable business intelligence.

Enterprise Features

  • Maze has a Reactive Support Model: Maze provides responsive support primarily for critical issues but lacks the proactive, dedicated support enterprise product teams require.
  • Optimal Provides Dedicated Enterprise Support: Optimal offers fast, personalized support with dedicated account teams and comprehensive training resources built by user experience experts that ensure your team is set up for success.

Enterprise Readiness

  • Maze is Buit for Individuals: Maze was built primarily for individual designers and small teams, lacking the enterprise features, compliance capabilities, and scalability that large organizations need.
  • Optimal is an Enterprise-Built Platform: Optimal was designed for enterprise use with comprehensive security protocols, compliance certifications, and scalability features that support large research programs across multiple teams and business units. Optimal is currently trusted by some of the world’s biggest brands including Netflix, Lego and Nike. 

Enterprises Need Reliable, Scalable User Insight

While Maze's focus on speed appeals to design teams seeking rapid iteration, enterprise product teams require the stability and reliability that only mature platforms provide. Optimal delivers both speed and dependability, enabling teams to iterate quickly without compromising research quality or business impact.Platform reliability isn't just about uptime, it's about helping product teams make high quality strategic decisions and to build organizational confidence in user insights. Mature teams need to choose platforms that enhance rather than undermine their research credibility.

Optimal is a Strategic Platform Investment

User insight platforms represent infrastructure investments that compound over time. Comprehensive platforms enable research programs that grow in sophistication and strategic impact, while limited tools create capability gaps that restrict research program maturity and organizational influence.

Don't let platform limitations compromise your research potential.

Ready to see how leading brands including Lego, Netflix and Nike achieve better research outcomes? Experience how Optimal's platform delivers user insights that adapt to your team's growing needs.

Share this article
Author
Optimal
Workshop

Related articles

View all blog articles
Learn more
1 min read

Designing User Experiences for Agentic AI: The Next Frontier

Beyond Generative AI: A New Paradigm Emerges

The AI landscape is undergoing a profound transformation. While generative AI has captured public imagination with its ability to create content, a new paradigm is quietly revolutionizing how we think about human-computer interaction: Agentic AI.

Unlike traditional software that waits for explicit commands or generative AI focused primarily on content creation, Agentic AI represents a fundamental shift toward truly autonomous systems. These advanced AI agents can independently make decisions, take actions, and solve complex problems with minimal human oversight. Rather than simply responding to prompts, they proactively work toward goals, demonstrating initiative and adaptability that more closely resembles human collaboration than traditional software interaction.

This evolution is already transforming industries across the board:

  • In customer service, AI agents handle complex inquiries end-to-end
  • In software development, they autonomously debug code and suggest improvements
  • In healthcare, they monitor patient data and flag concerning patterns
  • In finance, they analyze market trends and execute optimized strategies
  • In manufacturing and logistics, they orchestrate complex operations with minimal human intervention

As these autonomous systems become more prevalent, designing exceptional user experiences for them becomes not just important, but essential. The challenge? Traditional UX approaches built around graphical user interfaces and direct manipulation fall short when designing for AI that thinks and acts independently.

The New Interaction Model: From Commands to Collaboration

Interacting with Agentic AI represents a fundamental departure from conventional software experiences. The predictable, structured nature of traditional GUIs—with their buttons, menus, and visual feedback—gives way to something more fluid, conversational, and at times, unpredictable.

The ideal Agentic AI experience feels less like operating a tool and more like collaborating with a capable teammate. This shift demands that UX designers look beyond the visual aspects of interfaces to consider entirely new interaction models that emphasize:

  • Natural language as the primary interface
  • The AI's ability to take initiative appropriately
  • Establishing the right balance of autonomy and human control
  • Building and maintaining trust through transparency
  • Adapting to individual user preferences over time

The core challenge lies in bridging the gap between users accustomed to direct manipulation of software and the more abstract interactions inherent in systems that can think and act independently. How do we design experiences that harness the power of autonomy while maintaining the user's sense of control and understanding?

Understanding Users in the Age of Autonomous AI

The foundation of effective Agentic AI design begins with deep user understanding. Expectations for these autonomous agents are shaped by prior experiences with traditional AI assistants but require significant recalibration given their increased autonomy and capability.

Essential UX Research Methods for Agentic AI

Several research methodologies prove particularly valuable when designing for autonomous agents:

User Interviews provide rich qualitative insights into perceptions, trust factors, and control preferences. These conversations reveal the nuanced ways users think about AI autonomy—often accepting it readily for low-stakes tasks like calendar management while requiring more oversight for consequential decisions like financial planning.

Usability Testing with Agentic AI prototypes reveals how users react to AI initiative in real-time. Observing these interactions highlights moments where users feel empowered versus instances where they experience discomfort or confusion when the AI acts independently.

Longitudinal Studies track how user perceptions and interaction patterns evolve as the AI learns and adapts to individual preferences. Since Agentic AI improves through use, understanding this relationship over time provides critical design insights.

Ethnographic Research offers contextual understanding of how autonomous agents integrate into users' daily workflows and environments. This immersive approach reveals unmet needs and potential areas of friction that might not emerge in controlled testing environments.

Key Questions to Uncover

Effective research for Agentic AI should focus on several fundamental dimensions:

Perceived Autonomy: How much independence do users expect and desire from AI agents across different contexts? When does autonomy feel helpful versus intrusive?

Trust Factors: What elements contribute to users trusting an AI's decisions and actions? How quickly is trust lost when mistakes occur, and what mechanisms help rebuild it?

Control Mechanisms: What types of controls (pause, override, adjust parameters) do users expect to have over autonomous systems? How can these be implemented without undermining the benefits of autonomy?

Transparency Needs: What level of insight into the AI's reasoning do users require? How can this information be presented effectively without overwhelming them with technical complexity?

The answers to these questions vary significantly across user segments, task types, and domains—making comprehensive research essential for designing effective Agentic AI experiences.

Core UX Principles for Agentic AI Design

Designing for autonomous agents requires a unique set of principles that address their distinct characteristics and challenges:

Clear Communication

Effective Agentic AI interfaces facilitate natural, transparent communication between user and agent. The AI should clearly convey:

  • Its capabilities and limitations upfront
  • When it's taking action versus gathering information
  • Why it's making specific recommendations or decisions
  • What information it's using to inform its actions

Just as with human collaboration, clear communication forms the foundation of successful human-AI partnerships.

Robust Feedback Mechanisms

Agentic AI should provide meaningful feedback about its operations and make it easy for users to provide input on its performance. This bidirectional exchange enables:

  • Continuous learning and refinement of the agent's behavior
  • Adaptation to individual user preferences
  • Improved accuracy and usefulness over time

The most effective agents make feedback feel conversational rather than mechanical, encouraging users to shape the AI's behavior through natural interaction.

Thoughtful Error Handling

How an autonomous agent handles mistakes significantly impacts user trust and satisfaction. Effective error handling includes:

  • Proactively identifying potential errors before they occur
  • Clearly communicating when and why errors happen
  • Providing straightforward paths for recovery or human intervention
  • Learning from mistakes to prevent recurrence

The ability to gracefully manage errors and learn from them is often what separates exceptional Agentic AI experiences from frustrating ones.

Appropriate User Control

Users need intuitive mechanisms to guide and control autonomous agents, including:

  • Setting goals and parameters for the AI to work within
  • The ability to pause or stop actions in progress
  • Options to override decisions when necessary
  • Preferences that persist across sessions

The level of control should adapt to both user expertise and task criticality, offering more granular options for advanced users or high-stakes decisions.

Balanced Transparency

Effective Agentic AI provides appropriate visibility into its reasoning and decision-making processes without overwhelming users. This involves:

  • Making the AI's "thinking" visible and understandable
  • Explaining data sources and how they influence decisions
  • Offering progressive disclosure—basic explanations for casual users, deeper insights for those who want them

Transparency builds trust by demystifying what might otherwise feel like a "black box" of AI decision-making.

Proactive Assistance

Perhaps the most distinctive aspect of Agentic AI is its ability to anticipate needs and take initiative, offering:

  • Relevant suggestions based on user context
  • Automation of routine tasks without explicit commands
  • Timely information that helps users make better decisions

When implemented thoughtfully, this proactive assistance transforms the AI from a passive tool into a true collaborative partner.

Building User Confidence Through Transparency and Explainability

For users to embrace autonomous agents, they need to understand and trust how these systems operate. This requires both transparency (being open about how the system works) and explainability (providing clear reasons for specific decisions).

Several techniques can enhance these critical qualities:

  • Feature visualization that shows what the AI is "seeing" or focusing on
  • Attribution methods that identify influential factors in decisions
  • Counterfactual explanations that illustrate "what if" scenarios
  • Natural language explanations that translate complex reasoning into simple terms

From a UX perspective, this means designing interfaces that:

  • Clearly indicate when users are interacting with AI versus human systems
  • Make complex decisions accessible through visualizations or natural language
  • Offer progressive disclosure—basic explanations by default with deeper insights available on demand
  • Implement audit trails documenting the AI's actions and reasoning

The goal is to provide the right information at the right time, helping users understand the AI's behavior without drowning them in technical details.

Embracing Iteration and Continuous Testing

The dynamic, learning nature of Agentic AI makes traditional "design once, deploy forever" approaches inadequate. Instead, successful development requires:

Iterative Design Processes

  • Starting with minimal viable agents and expanding capabilities based on user feedback
  • Incorporating user input at every development stage
  • Continuously refining the AI's behavior based on real-world interaction data

Comprehensive Testing Approaches

  • A/B testing different AI behaviors with actual users
  • Implementing feedback loops for ongoing improvement
  • Monitoring key performance indicators related to user satisfaction and task completion
  • Testing for edge cases, adversarial inputs, and ethical alignment

Cross-Functional Collaboration

  • Breaking down silos between UX designers, AI engineers, and domain experts
  • Ensuring technical capabilities align with user needs
  • Creating shared understanding of both technical constraints and user expectations

This ongoing cycle of design, testing, and refinement ensures Agentic AI continuously evolves to better serve user needs.

Learning from Real-World Success Stories

Several existing applications offer valuable lessons for designing effective autonomous systems:

Autonomous Vehicles demonstrate the importance of clearly communicating intentions, providing reassurance during operation, and offering intuitive override controls for passengers.

Smart Assistants like Alexa and Google Assistant highlight the value of natural language processing, personalization based on user preferences, and proactive assistance.

Robotic Systems in industrial settings showcase the need for glanceable information, simplified task selection, and workflows that ensure safety in shared human-robot environments.

Healthcare AI emphasizes providing relevant insights to professionals, automating routine tasks to reduce cognitive load, and enhancing patient care through personalized recommendations.

Customer Service AI prioritizes personalized interactions, 24/7 availability, and the ability to handle both simple requests and complex problem-solving.

These successful implementations share several common elements:

  • They prioritize transparency about capabilities and limitations
  • They provide appropriate user control while maximizing the benefits of autonomy
  • They establish clear expectations about what the AI can and cannot do

Shaping the Future of Human-Agent Interaction

Designing user experiences for Agentic AI represents a fundamental shift in how we think about human-computer interaction. The evolution from graphical user interfaces to autonomous agents requires UX professionals to:

  • Move beyond traditional design patterns focused on direct manipulation
  • Develop new frameworks for building trust in autonomous systems
  • Create interaction models that balance AI initiative with user control
  • Embrace continuous refinement as both technology and user expectations evolve

The future of UX in this space will likely explore more natural interaction modalities (voice, gesture, mixed reality), increasingly sophisticated personalization, and thoughtful approaches to ethical considerations around AI autonomy.

For UX professionals and AI developers alike, this new frontier offers the opportunity to fundamentally reimagine the relationship between humans and technology—moving from tools we use to partners we collaborate with. By focusing on deep user understanding, transparent design, and iterative improvement, we can create autonomous AI experiences that genuinely enhance human capability rather than simply automating tasks.

The journey has just begun, and how we design these experiences today will shape our relationship with intelligent technology for decades to come.

Learn more
1 min read

5 ways to measure UX return on investment

Return on investment (ROI) is often the term on everyone’s lips when starting a big project or even when reviewing a website. It’s especially popular with those that hold the purse strings.  As UX researchers it is important to consider the ROI of the work we do and understand how to measure this. 

We’ve lined up 5 key ways to measure ROI for UX research to help you get the conversation underway with stakeholders so you can show real and tangible benefits to your organization. 

1. Meet and exceed user expectations

Put simply, a product that meets and exceeds user expectations leads to increased revenue. When potential buyers are able to find and purchase what they’re looking for, easily, they’ll complete their purchase, and are far more likely to come back. The simple fact that users can finish their task will increase sales and improve overall customer satisfaction which has an influence on their loyalty. Repeat business means repeat sales. Means increased revenue.

Creating, developing and maintaining a usable website is more important than you might think. And this is measurable! Tracking and analyzing website performance prior to the UX research and after can be insightful and directly influenced by changes made based on UX research.

Measurable: review the website (product) performance prior to UX research and after changes have been made. The increase in clicks, completed tasks and/or baskets will tell the story.

2. Reduce development time

UX research done at the initial stages of a project can lead to a reduction in development time of by 33% to 50%! And reduced time developing, means reduced costs (people and overheads) and a speedier to market date. What’s not to love? 

Measurable: This one is a little more tricky as you have saved time (and cost) up front. Aiding in speed to market and performance prior to execution. Internal stakeholder research may be of value post the live date to understand how the project went.

3. Ongoing development costs

And the double hitter? Creating a product that has the user in mind up front, reduces the need to rehash or revisit as quickly. Reducing ongoing costs. Early UX research can help with the detection of errors early on in the development process. Fixing errors after development costs a company up to 100 times more than dealing with the same error before development.

Measureable: Again, as UX research has saved time and money up front this one can be difficult to track. Though depending on your organization and previous projects you could conduct internal research to understand how the project compares and the time and cost savings.

4. Meeting user requirements

Did you know that 70% of projects fail due to the lack of user acceptance? This is often because project managers fail to understand the user requirements properly. Thanks to UX research early on, gaining insights into users and only spending time developing the functions users actually want, saving time and reducing development costs. Make sure you get confirmation on those requirements by iterative testing. As always, fail early, fail often. Robust testing up front means that in the end, you’ll have a product that will meet the needs of the user.

Measurable: Where is the product currently? How does it perform? Set a benchmark up front and review post UX research. The deliverables should make the ROI obvious.

5. Investing in UX research leads to an essential competitive advantage.

Thanks to UX research you can find out exactly what your customers want, need and expect from you. This gives you a competitive advantage over other companies in your market. But you should be aware that more and more companies are investing in UX while customers are ever more demanding, their expectations continue to grow and they don’t tolerate bad experiences. And going elsewhere is an easy decision to make.

Measurable: Murky this one, but no less important. Knowing, understanding and responding to competitors can help keep you in the lead, and developing products that meet and exceed those user expectations.

Wrap up

Showing the ROI on the work we do is an essential part of getting key stakeholders on board with our research. It can be challenging to talk the same language, ultimately we all want the same outcome…a product that works well for our users, and delivers additional revenue.

For some continued reading (or watching in this case), Anna Bek, Product and Delivery Manager at Xplor explored the same concept of "How to measure experience" during her UX New Zealand 2020 – watch it here as she shares a perspective on UX ROI.

Learn more
1 min read

Optimal vs. UserTesting: A Modern, Streamlined Platform or a Complex Enterprise Suite

The user research landscape has changed dramatically over the last few years, but not all of the platforms in the space have kept pace with each other. One of the biggest options in the market, UserTesting is a clear example of that. Optimal's customers choose us because UserTesting relies on legacy infrastructure and has outdated pricing models, whereas they feel that Optimal represents the next generation of research platforms, built for modern teams that are prioritizing agility, insight quality, and value.

What are the biggest differences between Optimal and UserTesting?

Cost

  • UserTesting is Expensive: UserTesting charges $5,000-$10,000 per user annually plus additional session-based fees, creating unpredictable costs that escalate the more research your team does. This means that teams often face budget surprises when conducting longer studies or more frequent research.
  • Optimal has Transparent Pricing: Optimal offers flat-rate pricing without per-seat fees or session units, enabling teams to scale research sustainbly. Our transparent pricing eliminates budget surprises and enables predictable research ops planning.

Return on Investment

  • Justifying the Cost of UserTesting: UserTesting's high costs and complex pricing structure make it hard to prove the ROI, particularly for teams conducting frequent research or extended studies that trigger additional session fees.
  • The Best Value in the Market: Optimal's straightforward pricing and comprehensive feature set deliver measurable ROI. We offer 90% of the features that UserTesting provides at 10% of the price.

Technology Evolution

  • UserTesting is Struggling to Modernize: UserTesting's platform shows signs of aging infrastructure, with slower performance and difficulty integrating modern research methodologies. Their technology advancement has lagged behind industry innovation.
  • Optimal is Purpose-Built for Modern Research: Optimal has invested heavily over the last few years in features for contemporary research needs, including AI-powered analysis and automation capabilities.

UserZoom Integration Challenges

  • UserZoom Integration Challenges: UserTesting's acquisition of UserZoom has created platform challenges that continue to impact user experience. UserTesting customers report confusion navigating between legacy systems and inconsistent feature availability and quality.
  • Built by Researchers for Researchers: Optimal has built from the ground up a single, cohesive platform without the complexity of merged acquisitions, ensuring consistent user experience and seamless workflow integration.

Participant Panel Quality

  • Poor Quality, In-House Panel: UserTesting's massive scale has led to participant quality issues, with researchers reporting difficulty finding high-quality participants for specialized research needs and inconsistent participant engagement.
  • Flexibility = Quality: Optimal prioritizes flexibility for our users, allowing our customers to bring their own participants for free or use our high-quality panels, with over 100+ million verified participants across 150+ countries who meet strict quality standards.

Customer Support Experience

  • Impersonal, Enterprise Support: Users report that UserTesting's large organizational structure creates slower support cycles, outsourced customer service, and reduced responsiveness to individual customer needs.
  • Agile, Personal Support: At Optimal we pride ourselves on our fast, human support with dedicated account management and direct access to product teams, ensuring fast and personalized support.

The Future of User Research Platforms

The research platform landscape has evolved from basic testing tools and legacy systems to comprehensive user insight platforms. Today, teams responsible for reserach require platforms that have evolved to include:

  • Advanced Analytics: AI-powered analysis that transforms data into actionable insights
  • Flexible Recruitment: Options for both BYO, panel and custom participant recruitment
  • Transparent Pricing: Predictable costs that scale with your needs
  • Responsive Development: Platforms that evolve based on user feedback and industry trends

Platforms Need to Evolve for Modern Research Needs

When selecting a vendor, teams need to choose a platform with the functionality that their teams need today, but also one that will also grow with the needs of your team in the future. Scalable, adaptable platforms enable research teams to:

  • Scale Efficiently: Grow research activities without exponential cost increaeses
  • Embrace Innovation: Integrate new research methodologies and analysis techniques as well as emerging tools like AI 
  • Maintain Standards: Ensure consistent participant, data and tool quality as the platform evolves
  • Stay Responsive: Adapt to changing business needs and market conditions

Research teams today need platforms that have successfully adapted to contemporary challenges: cost efficiency, rapid user insight and seamless workflow integration. The key is choosing a platform that continues to evolve rather than one constrained by outdated infrastructure and complex, legacy pricing models.

Ready to see how leading brands including Lego, Netflix and Nike achieve better research outcomes? Experience how Optimal's platform delivers user insights that adapt to your team's growing needs.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.