March 21, 2025
10

From Projects to Products: A Growing Career Trend

Optimal Workshop

Introduction

The skills market has a familiar whiff to it. A decade ago, digital execs scratched their heads as great swathes of the delivery workforce decided to retrain as User Experience experts. Project Managers and Business Analysts decided to muscle-in on the creative process that designers insisted was their purview alone. Win for systemised thinking. Loss for magic dust and mystery.

With UX, research and design roles being the first to hit the cutting room floor over the past 24 months, a lot of the responsibility to solve for those missing competencies in the product delivery cycle now resides with the T-shaped Product Managers, because their career origin story tends to embrace a broader foundation across delivery and design disciplines. And so, as UX course providers jostle for position in a distracted market, senior professionals are repackaging themselves as Product Managers.

Another Talent Migration? We’ve Seen This Before.

The skills market has a familiar whiff to it. A decade ago, Project Managers (PMs) and Business Analysts (BAs) pivoted into UX roles in their droves, chasing the north star of digital transformation and user-centric design. Now? The same opportunities to pivot are emerging again—this time into Product Management.

And if history is anything to go by, we already know how this plays out.

Between 2015 and 2019, UX job postings skyrocketed by 320% in some markets, fueled by digital-first strategies and a newfound corporate obsession with usability. PMs and BAs, sensing the shift, leaned into their adjacent skills—stakeholder management, process mapping, and research—and suddenly, UX wasn’t just for designers anymore. It was a business function.

Fast-forward to 2025, and Product Management is in the same phase of maturation and despite some Covid-led contraction, bouncing back to 5.1% growth. The role has evolved from feature shipping to strategic value creation while traditional project management roles are trending towards full-stack product managers who handle multiple aspects of product development with fractional PMs for part-time or project-based roles.

Why Is This Happening? The Data Tells the Story.

📈 Job postings for product management roles grew by 41% between 2020 and 2025, compared to a 23% decline in traditional project management roles during the same period (Indeed Labor Market Analytics).

📉 The demand for product managers has been growing, with roles increasing by 32% yearly in general terms.

💰 Salary Shenanigans: Product Managers generally earn higher salaries than Business Analysts. In the U.S., PMs earn about 45% more than BAs on average ($124,000 vs. $85,400). In Australia, PMs earn about 4% to 30% more than BAs ($130,000 vs. $105,000 to $125,000).

Three Structural Forces Driving the Shift

  1. Agile and Product-Led Growth Have Blurred the Lines
    Project success is no longer measured in timelines and budgets—it’s about customer lifetime value (CLTV) and feature adoption rates. For instance, 86% of teams have adopted the Agile approach, and 63% of IT teams are also using Agile methodologies forcing PMs to move beyond execution into continuous iteration and outcome-based thinking.
  2. Data Is the New Currency, and BAs Are Cashing In
    89% of product decisions in 2025 rely on analytics (Gartner, 2024). That’s prime territory for BAs, whose SQL skills, A/B testing expertise, and KPI alignment instincts make them critical players in data-driven product strategy.
  3. Role Consolidation Is Inevitable
    The post-pandemic belt-tightening has left one role doing the job of three. Today’s product managers don’t just prioritise backlogs - they manage stakeholders, interpret data, and (sometimes poorly) sketch out UX wireframes. Product manager job descriptions now list "requirements gathering" and "stakeholder management"—once core PM/BA responsibilities.

How This Mirrors the UX Migration of 2019

Source 1 - Source 2

Same pattern. Different discipline.

The Challenges of Becoming a Product Manager (and Why Some Will Struggle)

👀 Outputs vs. Outcomes – PMs think in deliverables. Transitioning PMs struggle to adjust to measuring success through customer impact instead of project completion.

🛠️ Legacy Tech Debt – Outdated tech stacks can lead to decreased productivity, integration issues, and security concerns. This complexity can slow down operations and hinder the efficiency of teams, including product management.

😰 Imposter Syndrome is Real – New product managers feel unqualified, mirroring the self-doubt UX migrants felt in 2019. Because let’s be honest—jumping into product strategy is a different beast from managing deliverables.

What Comes Next? The Smartest Companies Are Already Preparing.

🏆 Structured Reskilling – Programs like Google’s "PM Launchpad" reduce time-to-proficiency for new PMs. Enterprises that invest in structured career shifts will win the talent war.

📊 Hybrid Role Recognition – Expect to see “Analytics-Driven PM” and “Technical Product Owner” job titles formalising this shift, much like “UX Strategist” emerged post-2019.

🚀 AI Will Accelerate the Next Migration – As AI automates routine PM/BA tasks, expect even more professionals to pivot into strategic product roles. The difference? This time, the transition will be even faster.

Conclusion: The Cycle Continues

Tech talent moves in cycles. Product Management is simply the next career gold rush for systems thinkers with a skill for structure, process, and problem-solving. A structural response to the evolution of tech ecosystems.

Companies that recognise and support this transition will outpace those still clinging to rigid org charts. Because one thing is clear—the talent migration isn’t coming. It’s already here.

This article was researched with the help of Perplexity.ai

Publishing date
March 21, 2025
Share this article
Topics

Related articles

min read
Clara Kliman-Silver: AI & design: imagining the future of UX

In the last few years, the influence of AI has steadily been expanding into various aspects of design. In early 2023, that expansion exploded. AI tools and features are now everywhere, and there are two ways designers commonly react to it:

  • With enthusiasm for how they can use it to make their jobs easier
  • With skepticism over how reliable it is, or even fear that it could replace their jobs

Google UX researcher Clara Kliman-Silver is at the forefront of researching and understanding the potential impact of AI on design into the future. This is a hot topic that’s on the radar of many designers as they grapple with what the new normal is, and how it will change things in the coming years.

Clara’s background 

Clara Kliman-Silver spends her time studying design teams and systems, UX tools and designer-developer collaboration. She’s a specialist in participatory design and uses generative methods to investigate workflows, understand designer-developer experiences, and imagine ways to create UIs. In this work, Clara looks at how technology can be leveraged to help people make things, and do it more efficiently than they currently are.

In today’s context, that puts generative AI and machine learning right in her line of sight. The way this technology has boomed in recent times has many people scrambling to catch up - to identify the biggest opportunities and to understand the risks that come with it. Clara is a leader in assessing the implications of AI. She analyzes both the technology itself and the way people feel about it to forecast what it will mean into the future.

Contact Details:

You can find Clara in LinkedIn or on Twitter @cklimansilver

What role should artificial intelligence play in UX design process? 🤔

Clara’s expertise in understanding the role of AI in design comes from significant research and analysis of how the technology is being used currently and how industry experts feel about it. AI is everywhere in today’s world, from home devices to tech platforms and specific tools for various industries. In many cases, AI automation is used for productivity, where it can speed up processes with subtle, easy to use applications.

As mentioned above, the transformational capabilities of AI are met with equal parts of enthusiasm and skepticism. The way people use AI, and how they feel about it is important, because users need to be comfortable implementing the technology in order for it to make a difference. The question of what value AI brings to the design process is ongoing. On one hand, AI can help increase efficiency for systems and processes. On the other hand, it can exacerbate problems if the user's intentions are misunderstood.

Access for all 🦾

There’s no doubt that AI tools enable novices to perform tasks that, in years gone by, required a high level of expertise. For example, film editing was previously a manual task, where people would literally cut rolls of film and splice them together on a reel. It was something only a trained editor could do. Now, anyone with a smartphone has access to iMovie or a similar app, and they can edit film in seconds.

For film experts, digital technology allows them to speed up tedious tasks and focus on more sophisticated aspects of their work. Clara hypothesizes that AI is particularly valuable when it automates mundane tasks. AI enables more individuals to leverage digital technologies without requiring specialist training. Thus, AI has shifted the landscape of what it means to be an “expert” in a field. Expertise is about more than being able to simply do something - it includes having the knowledge and experience to do it for an informed reason. 

Research and testing 🔬

Clara performs a lot of concept testing, which involves recognizing the perceived value of an approach or method. Concept testing helps in scenarios where a solution may not address a problem or where the real problem is difficult to identify. In a recent survey, Clara describes two predominant benefits designers experienced from AI:

  1. Efficiency. Not only does AI expedite the problem solving process, it can also help efficiently identify problems. 
  2. Innovation. Generative AI can innovate on its own, developing ideas that designers themselves may not have thought of.

The design partnership 🤝🏽

Overall, Clara says UX designers tend to see AI as a creative partner. However, most users don’t yet trust AI enough to give it complete agency over the work it’s used for. The level of trust designers have exists on a continuum, where it depends on the nature of the work and the context of what they’re aiming to accomplish. Other factors such as where the tech comes from, who curated it and who’s training the model also influences trust. For now, AI is largely seen as a valued tool, and there is cautious optimism and tentative acceptance for its application. 

Why it matters 💡

AI presents as potentially one of the biggest game-changers to how people work in our generation. Although AI has widespread applications across sectors and systems, there are still many questions about it. In the design world, systems like DALL-E allow people to create AI-generated imagery, and auto layout in various tools allows designers to iterate more quickly and efficiently.

Like many other industries, designers are wondering where AI might go in the future and what it might look like. The answer to these questions has very real implications for the future of design jobs and whether they will exist. In practice, Clara describes the current mood towards AI as existing on a continuum between adherence and innovation:

  • Adherence is about how AI helps designers follow best practice
  • Innovation is at the other end of the spectrum, and involves using AI to figure out what’s possible

The current environment is extremely subjective, and there’s no agreed best practice. This makes it difficult to recommend a certain approach to adopting AI and creating permanent systems around it. Both the technology and the sentiment around it will evolve through time, and it’s something designers, like all people, will need to maintain good awareness of.

min read
Empowering UX Careers: Designlab Joins Forces with Optimal Workshop

Optimal Workshop is thrilled to welcome Designlab as our newest education partner. This collaboration merges our strengths to provide innovative learning opportunities for UX professionals looking to sharpen their design skills and elevate their careers. 

The Power of a Design-First Education Partner

What makes Designlab unique is its exclusive focus on design education. For more than a decade, they have dedicated themselves to providing hands-on learning experiences that  combine asynchronous, online lessons and projects with synchronous group sessions and expert mentorship. With a robust catalog of industry-relevant courses and an alumni network of over 20,000 professionals, Designlab is committed to empowering designers to make an impact at both individual and team levels.

What Designlab Offers for Experienced Designers

Designlab offers a range of advanced programs that support ongoing professional development. Some courses that might be interesting for our audience include:

  • Data-Driven Design: Gain confidence in your ability to collect and interpret data, justify design decisions with business impact, and win over stakeholders. 
  • Advanced Figma: Accelerate your design workflow and become a more efficient Figma user by learning tools like components, auto-layout, and design tokens. 
  • Strategic Business Acumen for Designers: Learn the foundational business knowledge and frameworks you need to influence strategy and get your design career to the next level.  
  • Advanced Usability and Accessibility: Strengthen your usability and accessibility skills, integrate universal design principles into your work, and improve advocacy for inclusivity in design.  

These courses ensure that experienced designers can enhance their technical and strategic skills to solve complex problems, lead projects, and design user-centered experiences.

Solutions for Design Teams

Designlab also offers solutions for design teams looking to upskill together. These solutions can range from multi-seat enrollments to their courses to custom facilitation and training programs, perfectly tailored to your teams’ needs. By partnering with Designlab, companies ensure their teams are equipped with practical skills and a forward-thinking mindset to tackle design challenges effectively.

READ: Designing for Accessibility with The Home Depot

Special Offer for the Optimal Workshop Community

To celebrate this partnership, Optimal Workshop users can take advantage of a special discount—$100 off any Designlab course with the code OPTIMAL. Whether you’re looking to refine your skills or explore new areas of expertise, Designlab’s programs offer the perfect opportunity to invest in your professional growth.

Explore how Designlab’s offerings can help you level up your design career—whether it’s through mastering advanced tools, leveraging data more, or becoming a more strategic thinker. With continuous learning at the heart of success in UX and product design, there’s no better time to start your journey with Designlab.

Unlock your potential and discover new possibilities with Designlab’s courses today. Use code OPTIMAL to save $100 on your next course and take the next step in your design career.

min read
The future of UX research: AI's role in analysis and synthesis ✨📝

As artificial intelligence (AI) continues to advance and permeate various industries, the field of user experience (UX) research is no exception. 

At Optimal Workshop, our recent Value of UX report revealed that 68% of UX professionals believe AI will have the greatest impact on analysis and synthesis in the research project lifecycle. In this article, we'll explore the current and potential applications of AI in UXR, its limitations, and how the role of UX researchers may evolve alongside these technological advancements.

How researchers are already using AI 👉📝

AI is already making inroads in UX research, primarily in tasks that involve processing large amounts of data, such as

  • Automated transcription: AI-powered tools can quickly transcribe user interviews and focus group sessions, saving researchers significant time.

  • Sentiment analysis: Machine learning algorithms can analyze text data from surveys or social media to gauge overall user sentiment towards a product or feature.

  • Pattern recognition: AI can help identify recurring themes or issues in large datasets, potentially surfacing insights that might be missed by human researchers.

  • Data visualization: AI-driven tools can create interactive visualizations of complex data sets, making it easier for researchers to communicate findings to stakeholders.

As AI technology continues to evolve, its role in UX research is poised to expand, offering even more sophisticated tools and capabilities. While AI will undoubtedly enhance efficiency and uncover deeper insights, it's important to recognize that human expertise remains crucial in interpreting context, understanding nuanced user needs, and making strategic decisions. 

The future of UX research lies in the synergy between AI's analytical power and human creativity and empathy, promising a new era of user-centered design that is both data-driven and deeply insightful.

The potential for AI to accelerate UXR processes ✨ 🚀

As AI capabilities advance, the potential to accelerate UX research processes grows exponentially. We anticipate AI revolutionizing UXR by enabling rapid synthesis of qualitative data, offering predictive analysis to guide research focus, automating initial reporting, and providing real-time insights during user testing sessions. 

These advancements could dramatically enhance the efficiency and depth of UX research, allowing researchers to process larger datasets, uncover hidden patterns, and generate insights faster than ever before. As we continue to develop our platform, we're exploring ways to harness these AI capabilities, aiming to empower UX professionals with tools that amplify their expertise and drive more impactful, data-driven design decisions.

AI’s good, but it’s not perfect 🤖🤨

While AI shows great promise in accelerating certain aspects of UX research, it's important to recognize its limitations, particularly when it comes to understanding the nuances of human experience. AI may struggle to grasp the full context of user responses, missing subtle cues or cultural nuances that human researchers would pick up on. Moreover, the ability to truly empathize with users and understand their emotional responses is a uniquely human trait that AI cannot fully replicate. These limitations underscore the continued importance of human expertise in UX research, especially when dealing with complex, emotionally-charged user experiences.

Furthermore, the creative problem-solving aspect of UX research remains firmly in the human domain. While AI can identify patterns and trends with remarkable efficiency, the creative leap from insight to innovative solution still requires human ingenuity. UX research often deals with ambiguous or conflicting user feedback, and human researchers are better equipped to navigate these complexities and make nuanced judgment calls. As we move forward, the most effective UX research strategies will likely involve a symbiotic relationship between AI and human researchers, leveraging the strengths of both to create more comprehensive, nuanced, and actionable insights.

Ethical considerations and data privacy concerns 🕵🏼‍♂️✨

As AI becomes more integrated into UX research processes, several ethical considerations come to the forefront. Data security emerges as a paramount concern, with our report highlighting it as a significant factor when adopting new UX research tools. Ensuring the privacy and protection of user data becomes even more critical as AI systems process increasingly sensitive information. Additionally, we must remain vigilant about potential biases in AI algorithms that could skew research results or perpetuate existing inequalities, potentially leading to flawed design decisions that could negatively impact user experiences.

Transparency and informed consent also take on new dimensions in the age of AI-driven UX research. It's crucial to maintain clarity about which insights are derived from AI analysis versus human interpretation, ensuring that stakeholders understand the origins and potential limitations of research findings. As AI capabilities expand, we may need to revisit and refine informed consent processes, ensuring that users fully comprehend how their data might be analyzed by AI systems. These ethical considerations underscore the need for ongoing dialogue and evolving best practices in the UX research community as we navigate the integration of AI into our workflows.

The evolving role of researchers in the age of AI ✨🔮

As AI technologies advance, the role of UX researchers is not being replaced but rather evolving and expanding in crucial ways. Our Value of UX report reveals that while 35% of organizations consider their UXR practice to be "strategic" or "leading," there's significant room for growth. This evolution presents an opportunity for researchers to focus on higher-level strategic thinking and problem-solving, as AI takes on more of the data processing and initial analysis tasks.

The future of UX research lies in a symbiotic relationship between human expertise and AI capabilities. Researchers will need to develop skills in AI collaboration, guiding and interpreting AI-driven analyses to extract meaningful insights. Moreover, they will play a vital role in ensuring the ethical use of AI in research processes and critically evaluating AI-generated insights. As AI becomes more prevalent, UX researchers will be instrumental in bridging the gap between technological capabilities and genuine human needs and experiences.

Democratizing UXR through AI 🌎✨

The integration of AI into UX research processes holds immense potential for democratizing the field, making advanced research techniques more accessible to a broader range of organizations and professionals. Our report indicates that while 68% believe AI will impact analysis and synthesis, only 18% think it will affect co-presenting findings, highlighting the enduring value of human interpretation and communication of insights.

At Optimal Workshop, we're excited about the possibilities AI brings to UX research. We envision a future where AI-powered tools can lower the barriers to entry for conducting comprehensive UX research, allowing smaller teams and organizations to gain deeper insights into their users' needs and behaviors. This democratization could lead to more user-centered products and services across various industries, ultimately benefiting end-users.

However, as we embrace these technological advancements, it's crucial to remember that the core of UX research remains fundamentally human. The unique skills of empathy, contextual understanding, and creative problem-solving that human researchers bring to the table will continue to be invaluable. As we move forward, UX researchers must stay informed about AI advancements, critically evaluate their application in research processes, and continue to advocate for the human-centered approach that is at the heart of our field.

By leveraging AI to handle time-consuming tasks and uncover patterns in large datasets, researchers can focus more on strategic interpretation, ethical considerations, and translating insights into impactful design decisions. This shift not only enhances the value of UX research within organizations but also opens up new possibilities for innovation and user-centric design.

As we continue to develop our platform at Optimal Workshop, we're committed to exploring how AI can complement and amplify human expertise in UX research, always with the goal of creating better user experiences.

The future of UX research is bright, with AI serving as a powerful tool to enhance our capabilities, democratize our practices, and ultimately create more intuitive, efficient, and delightful user experiences for people around the world.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.