April 2, 2024
6 min

Clara Kliman-Silver: AI & design: imagining the future of UX

In the last few years, the influence of AI has steadily been expanding into various aspects of design. In early 2023, that expansion exploded. AI tools and features are now everywhere, and there are two ways designers commonly react to it:

  • With enthusiasm for how they can use it to make their jobs easier
  • With skepticism over how reliable it is, or even fear that it could replace their jobs

Google UX researcher Clara Kliman-Silver is at the forefront of researching and understanding the potential impact of AI on design into the future. This is a hot topic that’s on the radar of many designers as they grapple with what the new normal is, and how it will change things in the coming years.

Clara’s background 

Clara Kliman-Silver spends her time studying design teams and systems, UX tools and designer-developer collaboration. She’s a specialist in participatory design and uses generative methods to investigate workflows, understand designer-developer experiences, and imagine ways to create UIs. In this work, Clara looks at how technology can be leveraged to help people make things, and do it more efficiently than they currently are.

In today’s context, that puts generative AI and machine learning right in her line of sight. The way this technology has boomed in recent times has many people scrambling to catch up - to identify the biggest opportunities and to understand the risks that come with it. Clara is a leader in assessing the implications of AI. She analyzes both the technology itself and the way people feel about it to forecast what it will mean into the future.

Contact Details:

You can find Clara in LinkedIn or on Twitter @cklimansilver

What role should artificial intelligence play in UX design process? 🤔

Clara’s expertise in understanding the role of AI in design comes from significant research and analysis of how the technology is being used currently and how industry experts feel about it. AI is everywhere in today’s world, from home devices to tech platforms and specific tools for various industries. In many cases, AI automation is used for productivity, where it can speed up processes with subtle, easy to use applications.

As mentioned above, the transformational capabilities of AI are met with equal parts of enthusiasm and skepticism. The way people use AI, and how they feel about it is important, because users need to be comfortable implementing the technology in order for it to make a difference. The question of what value AI brings to the design process is ongoing. On one hand, AI can help increase efficiency for systems and processes. On the other hand, it can exacerbate problems if the user's intentions are misunderstood.

Access for all 🦾

There’s no doubt that AI tools enable novices to perform tasks that, in years gone by, required a high level of expertise. For example, film editing was previously a manual task, where people would literally cut rolls of film and splice them together on a reel. It was something only a trained editor could do. Now, anyone with a smartphone has access to iMovie or a similar app, and they can edit film in seconds.

For film experts, digital technology allows them to speed up tedious tasks and focus on more sophisticated aspects of their work. Clara hypothesizes that AI is particularly valuable when it automates mundane tasks. AI enables more individuals to leverage digital technologies without requiring specialist training. Thus, AI has shifted the landscape of what it means to be an “expert” in a field. Expertise is about more than being able to simply do something - it includes having the knowledge and experience to do it for an informed reason. 

Research and testing 🔬

Clara performs a lot of concept testing, which involves recognizing the perceived value of an approach or method. Concept testing helps in scenarios where a solution may not address a problem or where the real problem is difficult to identify. In a recent survey, Clara describes two predominant benefits designers experienced from AI:

  1. Efficiency. Not only does AI expedite the problem solving process, it can also help efficiently identify problems. 
  2. Innovation. Generative AI can innovate on its own, developing ideas that designers themselves may not have thought of.

The design partnership 🤝🏽

Overall, Clara says UX designers tend to see AI as a creative partner. However, most users don’t yet trust AI enough to give it complete agency over the work it’s used for. The level of trust designers have exists on a continuum, where it depends on the nature of the work and the context of what they’re aiming to accomplish. Other factors such as where the tech comes from, who curated it and who’s training the model also influences trust. For now, AI is largely seen as a valued tool, and there is cautious optimism and tentative acceptance for its application. 

Why it matters 💡

AI presents as potentially one of the biggest game-changers to how people work in our generation. Although AI has widespread applications across sectors and systems, there are still many questions about it. In the design world, systems like DALL-E allow people to create AI-generated imagery, and auto layout in various tools allows designers to iterate more quickly and efficiently.

Like many other industries, designers are wondering where AI might go in the future and what it might look like. The answer to these questions has very real implications for the future of design jobs and whether they will exist. In practice, Clara describes the current mood towards AI as existing on a continuum between adherence and innovation:

  • Adherence is about how AI helps designers follow best practice
  • Innovation is at the other end of the spectrum, and involves using AI to figure out what’s possible

The current environment is extremely subjective, and there’s no agreed best practice. This makes it difficult to recommend a certain approach to adopting AI and creating permanent systems around it. Both the technology and the sentiment around it will evolve through time, and it’s something designers, like all people, will need to maintain good awareness of.

Share this article
Author
Optimal
Workshop

Related articles

View all blog articles
Learn more
1 min read

What’s the difference between UI and UX?

UI and UX are two terms that are often used interchangeably and confused for one another, but what do they actually mean? And is there a crossover between them?

These two terms have only grown in use in recent years, thanks largely to the exploding technology sector. This is great news. For organizations, effectively harnessing UX and UI enables them to build products and services that people will actually want to use – and continue using. For users, they’ll have access to products designed for them. 

What is UX? 🤳🎯

User experience (UX as it’s commonly called) refers to the experience that a person has with a product or service. 

We can determine whether a user experience is good or bad based on how easy (or difficult) it is for users to interact with the various elements of a product or service. Is the sign-up flow easy to use? Does the CTA button on the homepage encourage users to click? UX design exists to answer questions like these – and here’s how.

At the core of UX design is user research, which you can use to understand customer pain points and actually build products designed for the people using them. Typically, user research involves the use of a number of different research methods designed to answer specific questions. Card sorting, for example, can show you how people think the information on your website should be arranged.

Designer and information architect Peter Morville came up with the user experience honeycomb, which demonstrates the various components of UX design.

The UX honeycomb. Source.

Don Norman of Nielsen Norman Group defines UX as “[encompassing] all aspects of the end-users interaction with the company, its services, and its products”.

If this seems broad, that’s because it is. UX actually extends beyond just the digital products of an organization and can be used for areas like retail, customer service and more. In fact, there’s actually a growing movement to replace UX with customer experience (CX), as a way of encompassing all of these disparate elements.

What is UI? 🪄📲

User interface (UI), in the most stripped-back definition, is the interface by which a user and a computer system communicate with one another. This includes the touchscreen on your smartphone, the screen on your laptop, your mouse and keyboard and countless other mechanisms.

With this in mind, user interface design is focused on the elements that users will see on these interfaces, such as buttons, text and images. UI design is all about layout, look and feel. The objective of UI design is to visually guide users through an interface so they can complete their task. In a nutshell, you don’t want a user to think too hard about what they’re doing.

Shown here: The user interface of the Tesla Model S. Source.

UI has its origins in the 1980s, when Xerox developed the very first graphical user interface (GUI). Instead of needing to interact with a computer through a programming language, people could now use icons, menus and buttons. The rest, as they say, is history. Apple came along with the Macintosh computer in 1984 (bringing with it the first point and click mouse), and now we’re all carrying smartphones with touch screens that even a baby can operate.

Like UX, UI has grown significantly – going far beyond what you’ll see on a computer screen. Those involved in the field of UI design today will work as much on the interfaces of computer programs and apps as they will on the user interfaces of cars, wearable devices and technologies in the home. If current trends continue, UI design is likely to become an even bigger field in the years ahead.

What’s the difference between UX and UI? 👀

UX and UI are both essential components of a product or service. You can’t have one without the other, and, as we’ve explored, neglecting one could have serious consequences for your product’s success.

The difference between UX and UI is that UX is focused on the experience of using something and UI is focused on the look and feel of the interface. 

“User Experience (UX) and User Interface (UI) are some of the most confused and misused terms in our field. A UI without UX is like a painter slapping paint onto a canvas without thought; while UX without UI is like the frame of a sculpture with no paper mache on it. A great product experience starts with UX followed by UI. Both are essential for the product’s success”. - Rahul Varshney, co-creator of Foster.fm

The difference between UX and UI is that UX is focused on the experience of using something and UI is focused on the look and feel of the interface. 

Or, if you’d prefer a statement from venerable Nielsen Norman Group: “It’s important to distinguish the total user experience from the UI, even though the UI is obviously an extremely important part of the design. As an example, consider a website with movie reviews. Even if the UI for finding a film is perfect, the UX will be poor for a user who wants information about a small independent release if the underlying database only contains movies from the major studios”.

With this in mind, let’s now take a look at the people behind UX and UI. What do the roles look like in these fields? And, more importantly, what do they involve?

UX and UI jobs guide 📱🧑🏻💻

  • Visual designer: This role works with other design roles in the organization (brand, marketing, etc) to ensure designs match brand guidelines. Visual designers also work with UX designers to verify that designs meet accessibility and usability requirements.
  • UX strategist: At the core, a UX strategist should act as a champion of good UX. That is to say, work to ensure the principles of usability and human-centered design are well understood and utilized. They should also assume some of the responsibility of product-market fit, and work with product managers and the ‘business’ side of the organization to mesh business requirements with user requirements.
  • UX designer: The most common UX profession, UX designers should have a strong understanding of the principles of UX design as well as some research ability. Essentially a jack of all trades, the UX designer will float between all stages of the UX lifecycle, helping out with usability tests, putting together prototypes and working with other areas of the organization.
  • Service designer: The service designer looks at the entire end-to-end process and works with other designers, pulling them when required to liaise on visual designs and UI work. In a smaller organization, the responsibilities of this role will typically be absorbed by other roles, but eventually, there comes a time for the service designer. 

Wrap up 🎬

UX and UI as terms are only going to continue to grow, especially as technology and technology companies continue to proliferate across the globe. If you want to make sure that the user experience and user interfaces of your product or service are fit for the people using them, there’s no better place to start than with user research using powerful tools.

Learn more
1 min read

The future of UX research: AI's role in analysis and synthesis

As artificial intelligence (AI) continues to advance and permeate various industries, the field of user experience (UX) research is no exception. 

At Optimal Workshop, our recent Value of UX report revealed that 68% of UX professionals believe AI will have the greatest impact on analysis and synthesis in the research project lifecycle. In this article, we'll explore the current and potential applications of AI in UXR, its limitations, and how the role of UX researchers may evolve alongside these technological advancements.

How researchers are already using AI

AI is already making inroads in UX research, primarily in tasks that involve processing large amounts of data, such as

  • Automated transcription: AI-powered tools can quickly transcribe user interviews and focus group sessions, saving researchers significant time.

  • Sentiment analysis: Machine learning algorithms can analyze text data from surveys or social media to gauge overall user sentiment towards a product or feature.

  • Pattern recognition: AI can help identify recurring themes or issues in large datasets, potentially surfacing insights that might be missed by human researchers.

  • Data visualization: AI-driven tools can create interactive visualizations of complex data sets, making it easier for researchers to communicate findings to stakeholders.

As AI technology continues to evolve, its role in UX research is poised to expand, offering even more sophisticated tools and capabilities. While AI will undoubtedly enhance efficiency and uncover deeper insights, it's important to recognize that human expertise remains crucial in interpreting context, understanding nuanced user needs, and making strategic decisions. 

The future of UX research lies in the synergy between AI's analytical power and human creativity and empathy, promising a new era of user-centered design that is both data-driven and deeply insightful.

The potential for AI to accelerate UXR processes

As AI capabilities advance, the potential to accelerate UX research processes grows exponentially. We anticipate AI revolutionizing UXR by enabling rapid synthesis of qualitative data, offering predictive analysis to guide research focus, automating initial reporting, and providing real-time insights during user testing sessions. 

These advancements could dramatically enhance the efficiency and depth of UX research, allowing researchers to process larger datasets, uncover hidden patterns, and generate insights faster than ever before. As we continue to develop our platform, we're exploring ways to harness these AI capabilities, aiming to empower UX professionals with tools that amplify their expertise and drive more impactful, data-driven design decisions.

AI’s good, but it’s not perfect

While AI shows great promise in accelerating certain aspects of UX research, it's important to recognize its limitations, particularly when it comes to understanding the nuances of human experience. AI may struggle to grasp the full context of user responses, missing subtle cues or cultural nuances that human researchers would pick up on. Moreover, the ability to truly empathize with users and understand their emotional responses is a uniquely human trait that AI cannot fully replicate. These limitations underscore the continued importance of human expertise in UX research, especially when dealing with complex, emotionally-charged user experiences.

Furthermore, the creative problem-solving aspect of UX research remains firmly in the human domain. While AI can identify patterns and trends with remarkable efficiency, the creative leap from insight to innovative solution still requires human ingenuity. UX research often deals with ambiguous or conflicting user feedback, and human researchers are better equipped to navigate these complexities and make nuanced judgment calls. As we move forward, the most effective UX research strategies will likely involve a symbiotic relationship between AI and human researchers, leveraging the strengths of both to create more comprehensive, nuanced, and actionable insights.

Ethical considerations and data privacy concerns‍

As AI becomes more integrated into UX research processes, several ethical considerations come to the forefront. Data security emerges as a paramount concern, with our report highlighting it as a significant factor when adopting new UX research tools. Ensuring the privacy and protection of user data becomes even more critical as AI systems process increasingly sensitive information. Additionally, we must remain vigilant about potential biases in AI algorithms that could skew research results or perpetuate existing inequalities, potentially leading to flawed design decisions that could negatively impact user experiences.

Transparency and informed consent also take on new dimensions in the age of AI-driven UX research. It's crucial to maintain clarity about which insights are derived from AI analysis versus human interpretation, ensuring that stakeholders understand the origins and potential limitations of research findings. As AI capabilities expand, we may need to revisit and refine informed consent processes, ensuring that users fully comprehend how their data might be analyzed by AI systems. These ethical considerations underscore the need for ongoing dialogue and evolving best practices in the UX research community as we navigate the integration of AI into our workflows.

The evolving role of researchers in the age of AI

As AI technologies advance, the role of UX researchers is not being replaced but rather evolving and expanding in crucial ways. Our Value of UX report reveals that while 35% of organizations consider their UXR practice to be "strategic" or "leading," there's significant room for growth. This evolution presents an opportunity for researchers to focus on higher-level strategic thinking and problem-solving, as AI takes on more of the data processing and initial analysis tasks.

The future of UX research lies in a symbiotic relationship between human expertise and AI capabilities. Researchers will need to develop skills in AI collaboration, guiding and interpreting AI-driven analyses to extract meaningful insights. Moreover, they will play a vital role in ensuring the ethical use of AI in research processes and critically evaluating AI-generated insights. As AI becomes more prevalent, UX researchers will be instrumental in bridging the gap between technological capabilities and genuine human needs and experiences.

Democratizing UXR through AI

The integration of AI into UX research processes holds immense potential for democratizing the field, making advanced research techniques more accessible to a broader range of organizations and professionals. Our report indicates that while 68% believe AI will impact analysis and synthesis, only 18% think it will affect co-presenting findings, highlighting the enduring value of human interpretation and communication of insights.

At Optimal Workshop, we're excited about the possibilities AI brings to UX research. We envision a future where AI-powered tools can lower the barriers to entry for conducting comprehensive UX research, allowing smaller teams and organizations to gain deeper insights into their users' needs and behaviors. This democratization could lead to more user-centered products and services across various industries, ultimately benefiting end-users.

However, as we embrace these technological advancements, it's crucial to remember that the core of UX research remains fundamentally human. The unique skills of empathy, contextual understanding, and creative problem-solving that human researchers bring to the table will continue to be invaluable. As we move forward, UX researchers must stay informed about AI advancements, critically evaluate their application in research processes, and continue to advocate for the human-centered approach that is at the heart of our field.

By leveraging AI to handle time-consuming tasks and uncover patterns in large datasets, researchers can focus more on strategic interpretation, ethical considerations, and translating insights into impactful design decisions. This shift not only enhances the value of UX research within organizations but also opens up new possibilities for innovation and user-centric design.

As we continue to develop our platform at Optimal Workshop, we're committed to exploring how AI can complement and amplify human expertise in UX research, always with the goal of creating better user experiences.

The future of UX research is bright, with AI serving as a powerful tool to enhance our capabilities, democratize our practices, and ultimately create more intuitive, efficient, and delightful user experiences for people around the world.

Learn more
1 min read

Meera Pankhania: From funding to delivery - Ensuring alignment from start to finish

It’s a chicken and egg situation when it comes to securing funding for a large transformation program in government. On one hand, you need to submit a business case and, as part of that, you need to make early decisions about how you might approach and deliver the program of work. On the other hand, you need to know enough about the problem you are going to solve to ensure you have sufficient funding to understand the problem better, hire the right people, design the right service, and build it the right way. 

Now imagine securing hundreds of millions of dollars to design and build a service, but not feeling confident about what the user needs are. What if you had the opportunity to change this common predicament and influence your leadership team to carry out alignment activities, all while successfully delivering within the committed time frames?

Meera Pankhania, Design Director and Co-founder of Propel Design, recently spoke at UX New Zealand, the leading UX and IA conference in New Zealand hosted by Optimal Workshop, on traceability and her learnings from delivering a $300 million Government program.

In her talk, Meera helps us understand how to use service traceability techniques in our work and apply them to any environment - ensuring we design and build the best service possible, no matter the funding model.

Background on Meera Pankhania

As a design leader, Meera is all about working on complex, purpose-driven challenges. She helps organizations take a human-centric approach to service transformation and helps deliver impactful, pragmatic outcomes while building capability and leading teams through growth and change.

Meera co-founded Propel Design, a strategic research, design, and delivery consultancy in late 2020. She has 15 years of experience in service design, inclusive design, and product management across the private, non-profit, and public sectors in both the UK and Australia. 

Meera is particularly interested in policy and social design. After a stint in the Australian Public Service, Meera was appointed as a senior policy adviser to the NSW Minister for Customer Service, Hon. Victor Dominello MP. In this role, she played a part in NSW’s response to the COVID pandemic, flexing her design leadership skills in a new, challenging, and important context.

Contact Details:

Email address: meera@propeldesign.com.au

Find Meera on LinkedIn  

From funding to delivery: ensuring alignment from start to finish 🏁🎉👏

Meera’s talk explores a fascinating case study within the Department of Employment Services (Australia) where a substantial funding investment of around $300 million set the stage for a transformative journey. This funding supported the delivery of a revamped Employment Services Model, which had the goal of delivering better services to job seekers and employers, and a better system for providers within this system. The project had a focus on aligning teams prior to delivery, which resulted in a huge amount of groundwork for Meera.

Her journey involved engaging various stakeholders within the department, including executives, to understand the program as a whole and what exactly needed to be delivered. “Traceability” became the watchword for this project, which is laid out in three phases.

  • Phase 1: Aligning key deliverables
  • Phase 2: Ensuring delivery readiness
  • Phase 3: Building sustainable work practices

Phase 1: Aligning key deliverables 🧮

Research and discovery (pre-delivery)

Meera’s work initially meant conducting extensive research and engagement with executives, product managers, researchers, designers, and policymakers. Through this process, a common theme was identified – the urgent (and perhaps misguided) need to start delivering! Often, organizations focus on obtaining funding without adequately understanding the complexities involved in delivering the right services to the right users, leading to half-baked delivery.

After this initial research, some general themes started to emerge:

  1. Assumptions were made that still needed validation
  2. Teams weren’t entirely sure that they understood the user’s needs
  3. A lack of holistic understanding of how much research and design was needed

The conclusion of this phase was that “what” needed to be delivered wasn’t clearly defined. The same was true for “how” it would be delivered.

Traceability

Meera’s journey heavily revolved around the concept of "traceability” and sought to ensure that every step taken within the department was aligned with the ultimate goal of improving employment services. Traceability meant having a clear origin and development path for every decision and action taken. This is particularly important when spending taxpayer dollars!

So, over the course of eight weeks (which turned out to be much longer), the team went through a process of combing through documents in an effort to bring everything together to make sense of the program as a whole. This involved some planning, user journey mapping, and testing and refinement. 

Documenting Key Artifacts

Numerous artifacts and documents played a crucial role in shaping decisions. Meera and her team gathered and organized these artifacts, including policy requirements, legislation, business cases, product and program roadmaps, service maps, and blueprints. The team also included prior research insights and vision documents which helped to shape a holistic view of the required output.

After an effort of combing through the program documents and laying everything out, it became clear that there were a lot of gaps and a LOT to do.

Prioritising tasks

As a result of these gaps, a process of task prioritization was necessary. Tasks were categorized based on a series of factors and then mapped out based on things like user touch points, pain points, features, business policy, and technical capabilities.

This then enabled Meera and the team to create Product Summary Tiles. These tiles meant that each product team had its own summary ahead of a series of planning sessions. It gave them as much context (provided by the traceability exercise) as possible to help with planning. Essentially, these tiles provided teams with a comprehensive overview of their projects i.e. what their user needs, what certain policies require them to deliver, etc.  

Phase 2: Ensuring delivery readiness 🙌🏻

Meera wanted every team to feel confident that we weren’t doing too much or too little in order to design and build the right service, the right way.

Standard design and research check-ins were well adopted, which was a great start, but Meera and the team also built a Delivery Readiness Tool. It was used to assess a team's readiness to move forward with a project. This tool includes questions related to the development phase, user research, alignment with the business case, consideration of policy requirements, and more. Ultimately, it ensures that teams have considered all necessary factors before progressing further. 

Phase 3: Building sustainable work practices 🍃

As the program progressed, several sustainable work practices emerged which Government executives were keen to retain going forward.

Some of these included:

  • ResearchOps Practice: The team established a research operations practice, streamlining research efforts and ensuring that ongoing research was conducted efficiently and effectively.
  • Consistent Design Artifacts: Templates and consistent design artifacts were created, reducing friction and ensuring that teams going forward started from a common baseline.
  • Design Authority and Ways of Working: A design authority was established to elevate and share best practices across the program.
  • Centralized and Decentralized Team Models: The program showcased the effectiveness of a combination of centralized and decentralized team models. A central design team provided guidance and support, while service design leads within specific service lines ensured alignment and consistency.

Why it matters 🔥

Meera's journey serves as a valuable resource for those working on complex design programs, emphasizing the significance of aligning diverse stakeholders and maintaining traceability. Alignment and traceability are critical to ensuring that programs never lose sight of the problem they’re trying to solve, both from the user and organization’s perspective. They’re also critical to delivering on time and within budget!

Traceability key takeaways 🥡

  • Early Alignment Matters: While early alignment is ideal, it's never too late to embark on a traceability journey. It can uncover gaps, increase confidence in decision-making, and ensure that the right services are delivered.
  • Identify and audit: You never know what artifacts will shape your journey. Identify everything early, and don’t be afraid to get clarity on things you’re not sure about.
  • Conducting traceability is always worthwhile: Even if you don’t find many gaps in your program, you will at least gain a high level of confidence that your delivery is focused on the right things.

Delivery readiness key takeaways 🥡

  • Skills Mix is Vital: Assess and adapt team member roles to match their skills and experiences, ensuring they are positioned optimally.
  • Not Everyone Shares the Same Passion: Recognize that not everyone will share the same level of passion for design and research. Make the relevance of these practices clear to all team members.

Sustainability key takeaways 🥡

  • One Size Doesn't Fit All: Tailor methodologies, templates, and practices to the specific needs of your organization.
  • Collaboration is Key: Foster a sense of community and collective responsibility within teams, encouraging shared ownership of project outcomes.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.