May 1, 2016
3 min

A quick analysis of feedback collected with OptimalSort

Card sorting is an invaluable tool for understanding how people organize information in their minds, making websites more intuitive and content easier to navigate. It’s a useful method outside of information architecture and UX research, too. It can be a useful prioritization technique, or used in a more traditional sense. For example, it’s handy in psychology, sociology or anthropology to inform research and deepen our understanding of how people conceptualize information.

The introduction of remote card sorting has provided many advantages, making it easier than ever to conduct your own research. Tools such as our very own OptimalSort allow you to quickly and easily gather findings from a large number of participants from all around the world. Not having to organize moderated, face-to-face sessions gives researchers more time to focus on their work, and easier access to larger data sets.

One of the main disadvantages of remote card sorting is that it eliminates the opportunity to dive deeper into the choices made by your participants. Human conversation is a great thing, and when conducting a remote card sort with users who could potentially be on the other side of the world, opportunities for our participants to provide direct feedback and voice their opinions are severely limited.Your survey design may not be perfect.

The labels you provide your participants may be incorrect, confusing or redundant. Your users may have their own ideas of how you could improve your products or services beyond what you are trying to capture in your card sort. People may be more willing to provide their feedback than you realize, and limiting their insights to a simple card sort may not capture all that they have to offer.So, how can you run an unmoderated, remote card sort, but do your best to mitigate this potential loss of insight?

A quick look into the data

In an effort to evaluate the usefulness of the existing “Leave a comment” feature in OptimalSort, I recently asked our development team to pull out some data.You might be asking “There’s a comment box in OptimalSort?”If you’ve never noticed this feature, I can’t exactly blame you. It’s relatively hidden away as an unassuming hyperlink in the top right corner of your card sort.

OptimalSortCommentBox1

OptimalSortCommentBox2

Comments left by your participants can be viewed in the “Participants” tab in your results section, and are indicated by a grey speech bubble.

OptimalSortSpeechBubble

The history of the button is unknown even to long-time Optimal Workshop team members. The purpose of the button is also unspecified. “Why would anyone leave a comment while participating in a card sort?”, I found myself wondering.As it turns out, 133,303 comments have been left by participants. This means 133,303 insights, opinions, critiques or frustrations. Additionally, these numbers only represent the participants who noticed the feature in the first place. Considering the current button can easily be missed when focusing on the task at hand, I can’t help but wonder how this number might change if we drew more attention to the feature.

Breaking down the comments

To avoid having to manually analyze and code 133,303 open text fields, I decided to only spend enough time to decipher any obvious patterns. Luckily for me, this didn’t take very long. After looking at only a hundred or so random entries, four distinct types of comments started to emerge.

  1. This card/group doesn’t make sense.Comments related to cards and groups dominate. This is a great thing, as it means that the majority of comments made by participants relate specifically to the task they are completing. For closed and hybrid sorts, comments frequently relate to the predefined categories available, and since the participants most likely to leave a comment are those experiencing issues, the majority of the feedback relates to issues with category names themselves. Many comments are related to card labels and offer suggestions for improving naming conventions, while many others draw attention to some terms being confusing, unclear or jargony. Comments on task length can also be found, along with reasons for why certain cards may be left ungrouped, e.g., “I’ve left behind items I think the site could do without”.
  2. Your organization is awesome for doing this/you’re doing it all wrong. A substantial number of participants used the comment box as an opportunity to voice their general feedback on the organization or company running the study. Some of the more positive comments include an appreciation for seeing private companies or public sector organizations conducting research with real users in an effort to improve their services. It’s also nice to see many comments related to general enjoyment in completing the task.On the other hand, some participants used the comment box as an opportunity to comment on what other areas of their services should be improved, or what features they would like to see implemented that may otherwise be missed in a card sort, e.g., “Increased, accurate search functionality is imperative in a new system”.
  3. This isn’t working for me. Taking a closer look at some of the comments reveals some useful feedback for us at Optimal Workshop, too. Some of the comments relate specifically to UI and usability issues. The majority of these issues are things we are already working to improve or have dealt with. However, for researchers, comments that relate to challenges in using the tool or completing the survey itself may help explain some instances of data variability.
  4. #YOLO, hello, ;) And of course, the unrelated. As you may expect, when you provide people with the opportunity to leave a comment online, you can expect just about anything in return.

How to make the most of your user insights in OptimalSort

If you’re running a card sort, chances are you already place a lot of value in the voice of your users. To ensure you capture any additional insights, it’s best to ensure your participants are aware of the opportunity to do so. Here are two ways you may like to ensure your participants have a space to voice their feedback:

Adding more context to the “Leave a comment” feature

One way to encourage your participants to leave comments is to promote the use of the this feature in your card sort instructions. OptimalSort gives you flexibility to customize your instructions every time you run a survey. By making your participants aware of the feature, or offering ideas around what kinds of comments you may be looking for, you not only make them more likely to use the feature, but also open yourself up to a whole range of additional feedback. An advantage of using this feature is that comments can be added in real time during a card sort, so any remarks can be made as soon as they arise.

Making use of post-survey questions

Adding targeted post-survey questions is the best way to ensure your participants are able to voice any thoughts or concerns that emerged during the activity. Here, you can ask specific questions that touch upon different aspects of your card sort, such as length, labels, categories or any other comments your participants may have. This can not only help you generate useful insights but also inform the design of your surveys in the future.

Make your remote card sorts more human

Card sorts are exploratory by nature. Avoid forcing your participants into choices that may not accurately reflect their thinking by giving them the space to voice their opinions. Providing opportunities to capture feedback opens up the conversation between you and your users, and can lead to surprising insights from unexpected places.

Further reading

Share this article
Author
Optimal
Workshop

Related articles

View all blog articles
Learn more
1 min read

Which comes first: card sorting or tree testing?

“Dear Optimal, I want to test the structure of a university website (well certain sections anyway). My gut instinct is that it's pretty 'broken'. Lots of sections feel like they're in the wrong place. I want to test my hypotheses before proposing a new structure. I'm definitely going to do some card sorting, and was planning a mixture of online and offline. My question is about when to bring in tree testing. Should I do this first to test the existing IA? Or is card sorting sufficient? I do intend to tree test my new proposed IA in order to validate it, but is it worth doing it upfront too?" — Matt

Dear Matt,

Ah, the classic chicken or the egg scenario: Which should come first, tree testing or card sorting?

It’s a question that many researchers often ask themselves, but I’m here to help clear the air! You should always use both methods when changing up your information architecture (IA) in order to capture the most information.

Tree testing and card sorting, when used together, can give you fantastic insight into the way your users interact with your site. First of all, I’ll run through some of the benefits of each testing method.


What is card sorting and why should I use it?

Card sorting is a great method to gauge the way in which your users organize the content on your site. It helps you figure out which things go together and which things don’t. There are two main types of card sorting: open and closed.

Closed card sorting involves providing participants with pre-defined categories into which they sort their cards. For example, you might be reorganizing the categories for your online clothing store for women. Your cards would have all the names of your products (e.g., “socks”, “skirts” and “singlets”) and you also provide the categories (e.g.,“outerwear”, “tops” and “bottoms”).

Open card sorting involves providing participants with cards and leaving them to organize the content in a way that makes sense to them. It’s the opposite to closed card sorting, in that participants dictate the categories themselves and also label them. This means you’d provide them with the cards only, and no categories.

Card sorting, whether open or closed, is very user focused. It involves a lot of thought, input, and evaluation from each participant, helping you to form the structure of your new IA.


What is tree testing and why should I use it?

Tree testing is a fantastic way to determine how your users are navigating your site and how they’re finding information. Your site is organized into a tree structure, sorted into topics and subtopics, and participants are provided with some tasks that they need to perform. The results will show you how your participants performed those tasks, if they were successful or unsuccessful, and which route they took to complete the tasks. This data is extremely useful for creating a new and improved IA.

Tree testing is an activity that requires participants to seek information, which is quite the contrast to card sorting. Card sorting is an activity that requires participants to sort and organize information. Each activity requires users to behave in different ways, so each method will give its own valuable results.


Comparing tree testing and card sorting: Key differences

Tree testing and card sorting are complementary methods within your UX toolkit, each unlocking unique insights about how users interact with your site structure. The difference is all about direction.

Card sorting is generative. It helps you understand how users naturally group and label your content; revealing mental models, surfacing intuitive categories, and informing your site’s information architecture (IA) from the ground up. Whether using open or closed methods, card sorting gives users the power to organize content in ways that make sense to them.

Tree testing is evaluative. Once you’ve designed or restructured your IA, tree testing puts it to the test. Participants are asked to complete find-it tasks using only your site structure – no visuals, no design – just your content hierarchy. This highlights whether users can successfully locate information and how efficiently they navigate your content tree.

In short:

  • Card sorting = "How would you organize this?"
  • Tree testing = "Can you find this?"


Using both methods together gives you clarity and confidence. One builds the structure. The other proves it works.


Which method should you choose?

The right method depends on where you are in your IA journey. If you're beginning from scratch or rethinking your structure, starting with card sorting is ideal. It will give you deep insight into how users group and label content.

If you already have an existing IA and want to validate its effectiveness, tree testing is typically the better fit. Tree testing shows you where users get lost and what’s working well. Think of card sorting as how users think your site should work, and tree testing as how they experience it in action.


Should you run a card or tree test first?

In this scenario, I’d recommend running a tree test first in order to find out how your existing IA currently performs. You said your gut instinct is telling you that your existing IA is pretty “broken”, but it’s good to have the data that proves this and shows you where your users get lost.

An initial tree test will give you a benchmark to work with – after all, how will you know your shiny, new IA is performing better if you don’t have any stats to compare it with? Your results from your first tree test will also show you which parts of your current IA are the biggest pain points and from there you can work on fixing them. Make sure you keep these tasks on hand – you’ll need them later!

Once your initial tree test is done, you can start your card sort, based on the results from your tree test. Here, I recommend conducting an open card sort so you can understand how your users organize the content in a way that makes sense to them. This will also show you the language your participants use to name categories, which will help you when you’re creating your new IA.

Finally, once your card sort is done you can conduct another tree test on your new, proposed IA. By using the same (or very similar) tasks from your initial tree test, you will be able to see that any changes in the results can be directly attributed to your new and improved IA.

Once your test has concluded, you can use this data to compare the performance from the tree test for your original information architecture.


Why using both methods together is most effective

Card sorting and tree testing aren’t rivals, view them as allies. Used together, they give you end-to-end clarity. Card sorting informs your IA design based on user mental models. Tree testing evaluates that structure, confirming whether users can find what they need. This combination creates a feedback loop that removes guesswork and builds confidence. You'll move from assumptions to validation, and from confusion to clarity – all backed by real user behavior.

Learn more
1 min read

The powerful analysis features in our card sorting tool

You’ve just finished running your card sort. The study has closed and the data is waiting to be analyzed. It’s time to take a look at the analysis side of card sorting, specifically in our tool OptimalSort. Let’s get started.

A note on analysis 📌

When it comes to analysis, there are essentially two types. There’s exploratory analysis (when you look through data to get impressions, pull out useful ideas and be creative) and statistical analysis (which really just comes down to the numbers). These two types of analysis also go by qualitative and quantitative, respectively.

You’re able to get fantastic insights from both forms.

“Remember that you are the one who is doing the thinking, not the technique… you are the one who puts it all together into a great solution. Follow your instincts, take some risks, and try new approaches.” Donna Spencer, Maadmob.

Getting started with analysis 🏁

Whenever you wrap up a study using our card sorting tool, you’ll want to kick off your analysis by heading to the Results Overview section. It’s here that you’ll be able to see how many people actually took part in the study, the average time taken and general statistics about the study itself.

This is useful data to include in presentations to interested stakeholders, just to give them a more holistic view of your research.

Digging into your participant data ⛏

With the Results Overview section out of the way, you can make your way over to the Participants Table. This is where you can find information about the individual people who took part in your card sort. You can also start to filter your data here.

Here are just a few of the different actions that you can take:

  • Review your participants, and include or exclude certain individuals based on their card sorts. This is a useful tool if you want to use your data in different ways.
  • Segment and reload your results. This function can allow you to view data from individuals or groups of your choosing.
  • Add additional card sorts. If you also decided to run manual (in-person) card sorts using printed cards, you can add this data here.

Analysing open and hybrid card sort data 🕵️♂

The Categories tab is the best place to go for open and hybrid card sort results. Take some time to scan the categories people came up with and you’ll be able to quickly build up a good understanding of their ‘mental models’, or how they perceived the theme of your cards.

Consider how different the categories might look for cards containing food items, for example. Some participants might create categories reflecting supermarket aisles, while others might create categories reflecting food groups.

A good place to get started here is by refining your data. Standardize any categories that have similar labels (whether that’s wording, spelling or capitalizations etc). Hybrid card sorts have some set categories, and these will already be standardized.

Note: Before you start throwing categories with similar labels together, take a closer look to see if people had the same conceptual approach. Here’s an example from our card sorting 101 guide:

Of the 15 groups with the word ‘Animal’ in the label, 13 had a similar set of cards, but two participants had labeled their categories slightly differently (Animals and Environment’ and ‘Animals and Nature’) and had thus included extra cards the others didn’t have (‘Glaciers melting faster than previously thought’, for example).

Reviewing the Similarity Matrix 🤔

One really useful tool for understanding how your participants think is the Similarity Matrix. This view shows you the percentage of people who grouped 2 cards together.

The most closely related pairings are clustered along the right edge. Higher agreement between participants on which cards go together equates to darker and larger clusters.

There are a few different ways to use the insights from the Similarity Matrix:

  • Put together a draft website structure based on the clusters you see on the right.
  • Identify which card pairings are most common (and as a result should probably go together on your website).
  • Identify which card pairings are least common so you don’t need to waste time considering how they might work on your website.

Spotting popular card groupings 🔍

Dendrograms are a tool to enable you to spot popular groups of cards, as well to get a general feel of how similar or different your participants’ card sorts were to each other.

There are two dendrograms to explore:

  • More than 30 card sort participants: The Actual Agreement Method (AAM) dendrogram gives you the data straight: “X% of participants agree with this exact grouping”.
  • Fewer than 30 card sort participants: The Best Merge Method (BMM) tells you “X% of participants agree with parts of this grouping”, and so enables you to extract as much as you can from the data.

Looking for alternative approaches 👀

The Participant-Centric Analysis (PCA) view can be useful when you have a lot of results. It’s quite simple. Basically, it aims to find the most popular grouping strategy, and then find two more popular alternatives among participants who agreed with the first strategy.

This approach is called Participant-Centric Analysis because every response (from every participant) is treated as a potential solution, and then ranked for similarity with other responses. What this is telling you is that if you see a card sort with a 11/43 agreement score, this means 10 other participants sorted their cards into groups similar to these ones. 

Taking the next step: Run a card sort and try analysis for yourself 🃏

Now that we’ve taken a bit of a deep dive into the analysis side of card sorting in OptimalSort, it’s time to take the tool for a spin and start generating your own data.

Getting started is easy. If you haven’t already, simply sign up for a free account (you don’t need a credit card) and start a card sort. You can also practice by creating a card sort and sending it out to your coworkers, friends or family. Once you start to see results trickling in, you can start to make sense of the data.

For more information, check out the card sorting 101 guide that we’ve put together, or our introduction to card sorting on the Optimal Workshop Blog.

Happy testing! 

Learn more
1 min read

Card Sorting vs Tree Testing: what's the best?

A great information architecture (IA) is essential for a great user experience (UX). And testing your website or app’s information architecture is necessary to get it right.

Card sorting and tree testing are the very best UX research methods for exactly this. But the big question is always: which one should you use, and when? Very possibly you need both. Let’s find out with this quick summary.

What is card sorting and tree testing? 🧐

Card sorting is used to test the information architecture of a website or app. Participants group individual labels (cards) into different categories according to  criteria that makes best sense to them. Each label represents an item that needs to be categorized. The results provide deep insights to guide decisions needed to create an intuitive navigation, comprehensive labeling and content that is organized in a user-friendly way.

Tree testing is also used to test the information architecture of a website or app. When using tree testing participants are presented with a site structure and a set of tasks they need to complete. The goal for participants is to find their way through the site and complete their task. The test shows whether the structure of your website corresponds to what users expect and how easily (or not) they can navigate and complete their tasks.

What are the differences? 🂱 👉🌴

Card sorting is a UX research method which helps to gather insights about your content categorization. It focuses on creating an information architecture that responds intuitively to the users’ expectations. Things like which items go best together, the best options for labeling, what categories users expect to find on each menu.

Doing a simple card sort can give you all those pieces of information and so much more. You start understanding your user’s thoughts and expectations. Gathering enough insights and information to enable you to develop several information architecture options.

Tree testing is a UX research method that is almost a card sort in reverse. Tree testing is used to evaluate an information architecture structure and simply allows you to see what works and what doesn’t. 

Using tree testing will provide insights around whether your information architecture is intuitive to navigate, the labels easy to follow and ultimately if your items are categorized in a place that makes sense. Conversely it will also show where your users get lost and how.

What method should you use? 🤷

You’ve got this far and fine-tuning your information architecture should be a priority. An intuitive IA is an integral component of a user-friendly product. Creating a product that is usable and an experience users will come back for.

If you are still wondering which method you should use - tree testing or card sorting. The answer is pretty simple - use both.

Just like many great things, these methods work best together. They complement each other, allowing you to get much deeper insights and a rounded view of how your IA performs and where to make improvements than when used separately. We cover more reasons why card sorting loves tree testing in our article which dives deeper into why to use both.

Ok, I'm using both, but which comes first? 🐓🥚

Wanting full, rounded insights into your information architecture is great. And we know that tree testing and card sorting work well together. But is there an order you should do the testing in? It really depends on the particular context of your research - what you’re trying to achieve and your situation. 

Tree testing is a great tool to use when you have a product that is already up and running. By running a tree test first you can quickly establish where there may be issues, or snags. Places where users get caught and need help. From there you can try and solve potential issues by moving on to a card sort. 

Card sorting is a super useful method that can be instigated at any stage of the design process, from planning to development and beyond.  As long as there is an IA structure that can be tested again. Testing against an already existing website navigation can be informative. Or testing a reorganization of items (new or existing) can ensure the organization can align with what users expect.

However, when you decide to implement both of the methods in your research, where possible, tree testing should come before card sorting. If you want a little more on the issue have a read of our article here.

Check out our OptimalSort and Treejack tools - we can help you with your research and the best way forward. Wherever you might be in the process.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.