May 26, 2021

The powerful analysis features in our card sorting tool

You’ve just finished running your card sort. The study has closed and the data is waiting to be analyzed. It’s time to take a look at the analysis side of card sorting, specifically in our tool OptimalSort. Let’s get started.

A note on analysis 📌

When it comes to analysis, there are essentially two types. There’s exploratory analysis (when you look through data to get impressions, pull out useful ideas and be creative) and statistical analysis (which really just comes down to the numbers). These two types of analysis also go by qualitative and quantitative, respectively.

You’re able to get fantastic insights from both forms.

“Remember that you are the one who is doing the thinking, not the technique… you are the one who puts it all together into a great solution. Follow your instincts, take some risks, and try new approaches.” Donna Spencer, Maadmob.

Getting started with analysis 🏁

Whenever you wrap up a study using our card sorting tool, you’ll want to kick off your analysis by heading to the Results Overview section. It’s here that you’ll be able to see how many people actually took part in the study, the average time taken and general statistics about the study itself.

This is useful data to include in presentations to interested stakeholders, just to give them a more holistic view of your research.

Digging into your participant data ⛏

With the Results Overview section out of the way, you can make your way over to the Participants Table. This is where you can find information about the individual people who took part in your card sort. You can also start to filter your data here.

Here are just a few of the different actions that you can take:

  • Review your participants, and include or exclude certain individuals based on their card sorts. This is a useful tool if you want to use your data in different ways.
  • Segment and reload your results. This function can allow you to view data from individuals or groups of your choosing.
  • Add additional card sorts. If you also decided to run manual (in-person) card sorts using printed cards, you can add this data here.

Analysing open and hybrid card sort data 🕵️♂

The Categories tab is the best place to go for open and hybrid card sort results. Take some time to scan the categories people came up with and you’ll be able to quickly build up a good understanding of their ‘mental models’, or how they perceived the theme of your cards.

Consider how different the categories might look for cards containing food items, for example. Some participants might create categories reflecting supermarket aisles, while others might create categories reflecting food groups.

A good place to get started here is by refining your data. Standardize any categories that have similar labels (whether that’s wording, spelling or capitalizations etc). Hybrid card sorts have some set categories, and these will already be standardized.

Note: Before you start throwing categories with similar labels together, take a closer look to see if people had the same conceptual approach. Here’s an example from our card sorting 101 guide:

Of the 15 groups with the word ‘Animal’ in the label, 13 had a similar set of cards, but two participants had labeled their categories slightly differently (Animals and Environment’ and ‘Animals and Nature’) and had thus included extra cards the others didn’t have (‘Glaciers melting faster than previously thought’, for example).

Reviewing the Similarity Matrix 🤔

One really useful tool for understanding how your participants think is the Similarity Matrix. This view shows you the percentage of people who grouped 2 cards together.

The most closely related pairings are clustered along the right edge. Higher agreement between participants on which cards go together equates to darker and larger clusters.

There are a few different ways to use the insights from the Similarity Matrix:

  • Put together a draft website structure based on the clusters you see on the right.
  • Identify which card pairings are most common (and as a result should probably go together on your website).
  • Identify which card pairings are least common so you don’t need to waste time considering how they might work on your website.

Spotting popular card groupings 🔍

Dendrograms are a tool to enable you to spot popular groups of cards, as well to get a general feel of how similar or different your participants’ card sorts were to each other.

There are two dendrograms to explore:

  • More than 30 card sort participants: The Actual Agreement Method (AAM) dendrogram gives you the data straight: “X% of participants agree with this exact grouping”.
  • Fewer than 30 card sort participants: The Best Merge Method (BMM) tells you “X% of participants agree with parts of this grouping”, and so enables you to extract as much as you can from the data.

Looking for alternative approaches 👀

The Participant-Centric Analysis (PCA) view can be useful when you have a lot of results. It’s quite simple. Basically, it aims to find the most popular grouping strategy, and then find two more popular alternatives among participants who agreed with the first strategy.

This approach is called Participant-Centric Analysis because every response (from every participant) is treated as a potential solution, and then ranked for similarity with other responses. What this is telling you is that if you see a card sort with a 11/43 agreement score, this means 10 other participants sorted their cards into groups similar to these ones. 

Taking the next step: Run a card sort and try analysis for yourself 🃏

Now that we’ve taken a bit of a deep dive into the analysis side of card sorting in OptimalSort, it’s time to take the tool for a spin and start generating your own data.

Getting started is easy. If you haven’t already, simply sign up for a free account (you don’t need a credit card) and start a card sort. You can also practice by creating a card sort and sending it out to your coworkers, friends or family. Once you start to see results trickling in, you can start to make sense of the data.

For more information, check out the card sorting 101 guide that we’ve put together, or our introduction to card sorting on the Optimal Workshop Blog.

Happy testing! 

Share this article
Author
Optimal
Workshop

Related articles

View all blog articles
Learn more
1 min read

Card Sorting outside UX: How I use online card sorting for in-person sociological research

Hello, my name is Rick and I’m a sociologist. All together, “Hi, Rick!” Now that we’ve got that out of the way, let me tell you about how I use card sorting in my research. I'll soon be running a series of in-person, moderated card sorting sessions. This article covers why card sorting is an integral part of my research, and how I've designed the study toanswer specific questions about two distinct parts of society.

Card sorting to establish how different people comprehend their worlds

Card sorting,or pile sorting as it’s sometimes called, has a long history in anthropology, psychology and sociology. Anthropologists, in particular, have used it to study how different cultures think about various categories. Researchers in the 1970s conducted card sorts to understand how different cultures categorize things like plants and animals. Sociologists of that era also used card sorts to examine how people think about different professions and careers. And since then, scholars have continued to use card sorts to learn about similar categorization questions.

In my own research, I study how different groups of people in the United States imagine the category of 'religion'. Asthose crazy 1970s anthropologists showed, card sorting is a great way to understand how people cognitively understand particular social categories. So, in particular,I’m using card sorting in my research to better understand how groups of people with dramatically different views understand 'religion' — namely, evangelical Christians and self-identified atheists. Thinkof it like this. Some people say that religion is the bedrock of American society.

Others say that too much religion in public life is exactly what’s wrong with this country. What's not often considered is these two groups oftenunderstand the concept of 'religion' in very different ways. It’s like the group of blind men and the elephant: one touches the trunk, one touches the ears, and one touches the tail. All three come away with very different ideas of what an elephant is. So you could say that I study how different people experience the 'elephant' of religion in their daily lives. I’m doing so using primarily in-person moderated sorts on an iPad, which I’ll describe below.

How I generated the words on the cards

The first step in the process was to generate lists of relevant terms for my subjects to sort. Unlike in UX testing, where cards for sorting might come from an existing website, in my world these concepts first have to be mined from the group of people being studied. So the first thing I did was have members of both atheist and evangelical groups complete a free listing task. In a free listing task, participants simply list as many words as they can that meet the criteria given. Sets of both atheist and evangelical respondents were given the instructions: "What words best describe 'religion?' Please list as many as you can.” They were then also asked to list words that describe 'atheism', 'spirituality', and 'Christianity'.

I took the lists generated and standardizedthem by combining synonyms. For example, some of my atheists used words like 'ancient', 'antiquated', and 'archaic' to describe religion. SoI combined all of these words into the one that was mentioned most: 'antiquated'. By doing this, I created a list of the most common words each group used to describe each category. Doing this also gave my research another useful dimension, ideal for exploring alongside my card sorting results. Free lists can beanalyzed themselves using statistical techniques likemulti-dimensional scaling, so I used this technique for apreliminary analysis of the words evangelicals used to describe 'atheism':

Optimalsort and sociological research

Now that I’m armed with these lists of words that atheist and evangelicals used to describe religion, atheism etc., I’m about to embark on phase two of the project: the card sort.

Why using card sorting software is a no-brainer for my research

I’ll be conducting my card sorts in person, for various reasons. I have relatively easy access to the specific population that I’m interested in, and for the kind of academic research I’m conducting, in-person activities are preferred. In theory, I could just print the words on some index cards and conduct a manual card sort, but I quickly realized that a software solution would be far preferable, for a bunch of reasons.

First of all, it's important for me to conductinterviews in coffee shops and restaurants, and an iPad on the table is, to put it mildly, more practical than a table covered in cards — no space for the teapot after all.

Second, usingsoftwareeliminates the need for manual data entry on my part. Not only is manual data entry a time consuming process, but it also introduces the possibly of data entry errors which may compromise my research results.

Third, while the bulk of the card sorts are going to be done in person, having an online version will enable meto scale the project up after the initial in-person sorts are complete. The atheist community, in particular, has a significant online presence, making a web solution ideal for additional data collection.

Fourth, OptimalSort gives the option to re-direct respondents after they complete a sort to any webpage, which allows multiple card sorts to be daisy-chained together. It also enables card sorts to be easily combined with complex survey instruments from other providers (e.g. Qualtrics or Survey Monkey), so card sorting data can be gathered in conjunction with other methodologies.

Finally, and just as important, doing card sorts on a tablet is more fun for participants. After all, who doesn’t like to play with an iPad? If respondents enjoy the unique process of the experiment, this is likely to actually improve the quality of the data, andrespondents are more likely to reflect positively on the experience, making recruitment easier. And a fun experience also makes it more likely that respondents will complete the exercise.

What my in-person, on-tablet card sorting research will look like

Respondents will be handed an iPad Air with 4G data capability. While the venues where the card sorts will take place usually have public Wi-Fi networks available, these networks are not always reliable, so the cellular data capabilities are needed as a back-up (and my pre-testing has shown that OptimalSort works on cellular networks too).

The iPad’s screen orientation will be locked to landscape and multi-touch functions will be disabled to prevent respondents from accidentally leaving the testing environment. In addition, respondents will have the option of using a rubber tipped stylus for ease of sorting the cards. While I personally prefer to use a microfiber tipped stylus in other applications, pre-testing revealed that an old fashioned rubber tipped stylus was easier for sorting activities.

using a tablet to conduct a card sort

When the respondent receives the iPad, the card sort first page with general instructions will already be open on the tablet in the third party browser Perfect Web. A third party browser is necessary because it is best to run OptimalSort locked in a full screen mode, both for aesthetic reasons and to keep the screen simple and uncluttered for respondents. Perfect Web is currently the best choice in the ever shifting app landscape.

participants see the cards like this

I'll give respondents their instructions and then go to another table to give them privacy (because who wants the creepy feeling of some guy hanging over you as you do stuff?). Altogether, respondents will complete two open card sorts and a fewsurvey-style questions, all chained together by redirect URLs. First, they'll sort 30 cards into groups based on how they perceive 'religion', and name the categories they create. Then, they'll complete a similar card sort, this time based on how they perceive 'atheism'.

Both atheist and evangelicals will receive a mixture of some of the top words that both groups generated in the earlier free listing tasks. To finish, they'll answer a few questions that will provide further data on how they think about 'religion'. After I’ve conducted these card sorts with both of my target populations, I’ll analyze the resulting data on its own and also in conjunction with qualitative data I’ve already collected via ethnographic research and in-depth interviews. I can't wait, actually. In a few months I’ll report back and let you know what I’ve found.

Learn more
1 min read

Card descriptions: Testing the effect of contextual information in card sorts

The key purpose of running a card sort is to learn something new about how people conceptualize and organize the information that’s found on your website. The insights you gain from running a card sort can then help you develop a site structure with content labels or headings that best represent the way your users think about this information. Card sorts are in essence a simple technique, however it’s the details of the sort that can determine the quality of your results.

Adding context to cards in OptimalSort – descriptions, links and images

In most cases, each item in a card sort has only a short label, but there are instances where you may wish to add additional context to the items in your sort. Currently, the cards tab in OptimalSort allows you to include a tooltip description, a link within the tooltip description or to format the card as an image (with or without a label).

adding descriptions and images - 640px

We generally don’t recommend using tooltip descriptions and links, unless you have a specific reason to do so. It’s likely that they’ll provide your participants with more information than they would normally have when navigating your website, which may in turn influence your results by leading participants to a particular solution.

Legitimate reasons that you may want to use descriptions and links include situations where it’s not possible or practical to translate complex or technical labels (for example, medical, financial, legal or scientific terms) into plain language, or if you’re using a card sort to understand your participants’ preferences or priorities.

If you do decide to include descriptions in your sort, it’s important that you follow the same guidelines that you would otherwise follow for writing card labels. They should be easy for your participants to understand and you should avoid obvious patterns, for example repeating words and phrases, or including details that refer to the current structure of the website.

A quick survey of how card descriptions are used in OptimalSort

I was curious to find out how often people were including descriptions in their card sorts, so I asked our development team to look into this data. It turns out that around 15% of cards created in OptimalSort have at least some text entered in the description field. In order to dig into the data a bit further, both Ania and I reviewed a random sample of recent sorts and noted how descriptions were being used in each case.

We found that out of the descriptions that we reviewed, 40% (6% of the total cards) had text that should not have impacted the sort results. Most often, these cards simply had the card label repeated in the description (to be honest, we’re not entirely sure why so many descriptions are being used this way! But it’s now in our roadmap to stop this from happening — stay tuned!). Approximately 20% (3% of the total cards) used descriptions to add context without obviously leading participants, however another 40% of cards have descriptions that may well lead to biased results. On occasion, this included linking to the current content or using what we assumed to be the current top level heading within the description.

Use of card descriptions

Create pie charts

Testing the effect of card descriptions on sort results

So, how much influence could potentially leading card descriptions have on the results of a card sort? I decided to put it to the test by running a series of card sorts to compare the effect of different descriptions. As I also wanted to test the effect of linking card descriptions to existing content, I had to base the sort on a live website. In addition, I wanted to make sure that the card labels and descriptions were easily comprehensible by a general audience, but not so familiar that participants were highly likely to sort the cards in a similar manner.

I selected the government immigration website New Zealand Now as my test case. This site, which provides information for prospective and new immigrants to New Zealand, fit the above criteria and was likely unfamiliar to potential participants.

Card descriptions

Navigating the New Zealand Now website

When I reviewed the New Zealand Now site, I found that the top level navigation labels were clear and easy to understand for me personally. Of course, this is especially important when much of your target audience is likely to be non-native English speaking! On the whole, the second level headings were also well-labeled, which meant that they should translate to cards that participants were able to group relatively easily.

There were, however, a few headings such as “High quality” and “Life experiences”, both found under “Study in New Zealand”, which become less clear when removed from the context of their current location in the site structure. These headings would be particularly useful to include in the test sorts, as I predicted that participants would be more likely to rely on card descriptions in the cases where the card label was ambiguous.

Card Descriptions2

I selected 30 headings to use as card labels from under the sections “Choose New Zealand”, “Move to New Zealand”, “Live in New Zealand”, “Work in New Zealand” and “Study in New Zealand” and tweaked the language slightly, so that the labels were more generic.

card labels

I then created four separate sorts in OptimalSort:Round 1: No description: Each card showed a heading only — this functioned as the control sort

Card descriptions illustrations - card label only

Round 2: Site section in description: Each card showed a heading with the site section in the description

Card descriptions illustrations - site section

Round 3: Short description: Each card showed a heading with a short description — these were taken from the New Zealand Now topic landing pages

Card descriptions illustrations - short description

Round 4:Link in description: Each card showed a heading with a link to the current content page on the New Zealand Now website

Card descriptions illustrations - link

For each sort, I recruited 30 participants. Each participant could only take part in one of the sorts.

What the results showed

An interesting initial finding was that when we queried the participants following the sort, only around 40% said they noticed the tooltip descriptions and even fewer participants stated that they had used them as an aid to help complete the sort.

Participant recognition of descriptions

Create bar charts

Of course, what people say they do does not always reflect what they do in practice! To measure the effect that different descriptions had on the results of this sort, I compared how frequently cards were sorted with other cards from their respective site sections across the different rounds.Let’s take a look at the “Study in New Zealand” section that was mentioned above. Out of the five cards in this section,”Where & what to study”, “Everyday student life” and “After you graduate” were sorted pretty consistently, regardless of whether a description was provided or not. The following charts show the average frequency with which each card was sorted with other cards from this section. For example in the control round, “Where & what to study” was sorted with “After you graduate” 76% of the time and with “Everyday day student life” 70% of the time, but was sorted with “Life experiences” or “High quality” each only 10% of the time. This meant that the average sort frequency for this card was 42%.

Untitled chartCreate bar charts

On the other hand, the cards “High quality” and “Life experiences” were sorted much less frequently with other cards in this section, with the exception of the second sort, which included the site section in the description.These results suggest that including the existing site section in the card description did influence how participants sorted these cards — confirming our prediction! Interestingly, this round had the fewest number of participants who stated that they used the descriptions to help them complete the sort (only 10%, compared to 40% in round 3 and 20% in round 4).Also of note is that adding a link to the existing content did not seem to increase the likelihood that cards were sorted more frequently with other cards from the same section. Reasons for this could include that participants did not want to navigate to another website (due to time-consciousness in completing the task, or concern that they’d lose their place in the sort) or simply that it can be difficult to open a link from the tooltip pop-up.

What we can take away from these results

This quick investigation into the impact of descriptions illustrates some of the intricacies around using additional context in your card sorts, and why this should always be done with careful consideration. It’s interesting that we correctly predicted some of these results, but that in this case, other uses of the description had little effect at all. And the results serve as a good reminder that participants can often be influenced by factors that they don’t even recognise themselves!If you do decide to use card descriptions in your cards sorts, here are some guidelines that we recommend you follow:

  • Avoid repeating words and phrases, participants may sort cards by pattern-matching rather than based on the actual content
  • Avoid alluding to a predetermined structure, such as including references to the current site structure
  • If it’s important that participants use the descriptions to complete the sort, you should mention this in your task instructions. It may also be worth asking them a post-survey question to validate if they used them or not

We’d love to hear your thoughts on how we tested the effects of card descriptions and the results that we got. Would you have done anything differently?Have you ever completed a card sort only to realize later that you’d inadvertently biased your results? Or have you used descriptions in your card sorts to meet a genuine need? Do you think there’s a case to make descriptions more obvious than just a tooltip, so that when they are used legitimately, most participants don’t miss this information?

Let us know by leaving a comment!

Learn more
1 min read

Behind the scenes of UX work on Trade Me's CRM system

We love getting stuck into scary, hairy problems to make things better here at Trade Me. One challenge for us in particular is how best to navigate customer reaction to any change we make to the site, the app, the terms and conditions, and so on. Our customers are passionate both about the service we provide — an online auction and marketplace — and its place in their lives, and are rightly forthcoming when they're displeased or frustrated. We therefore rely on our Customer Service (CS) team to give customers a voice, and to respond with patience and skill to customer problems ranging from incorrectly listed items to reports of abusive behavior.

The CS team uses a Customer Relationship Management (CRM) system, Trade Me Admin, to monitor support requests and manage customer accounts. As the spectrum of Trade Me's services and the complexity of the public website have grown rapidly, the CRM system has, to be blunt, been updated in ways which have not always been the prettiest. Links for new tools and reports have simply been added to existing pages, and old tools for services we no longer operate have not always been removed. Thus, our latest focus has been to improve the user experience of the CRM system for our CS team.

And though on the surface it looks like we're working on a product with only 90 internal users, our changes will have flow on effects to tens of thousands of our members at any given time (from a total number of around 3.6 million members).

The challenges of designing customer service systems

We face unique challenges designing customer service systems. Robert Schumacher from GfK summarizes these problems well. I’ve paraphrased him here and added an issue of my own:

1. Customer service centres are high volume environments — Our CS team has thousands of customer interactions every day, and and each team member travels similar paths in the CRM system.

2. Wrong turns are amplified — With so many similar interactions, a system change that adds a minute more to processing customer queries could slow down the whole team and result in delays for customers.

3. Two people relying on the same system — When the CS team takes a phone call from a customer, the CRM system is serving both people: the CS person who is interacting with it, and the caller who directs the interaction. Trouble is, the caller can't see the paths the system is forcing the CS person to take. For example, in a previous job a client’s CS team would always ask callers two or three extra security questions — not to confirm identites, but to cover up the delay between answering the call and the right page loading in the system.

4. Desktop clutter — As a result of the plethora of tools and reports and systems, the desktop of the average CS team member is crowded with open windows and tabs. They have to remember where things are and also how to interact with the different tools and reports, all of which may have been created independently (ie. work differently). This presents quite the cognitive load.

5. CS team members are expert users — They use the system every day, and will all have their own techniques for interacting with it quickly and accurately. They've also probably come up with their own solutions to system problems, which they might be very comfortable with. As Schumacher says, 'A critical mistake is to discount the expert and design for the novice. In contact centers, novices become experts very quickly.'

6. Co-design is risky — Co-design workshops, where the users become the designers,  are all the rage, and are usually pretty effective at getting great ideas quickly into systems. But expert users almost always end up regurgitating the system they're familiar with, as they've been trained by repeated use of systems to think in fixed ways.

7. Training is expensive — Complex systems require more training so if your call centre has high churn (ours doesn’t – most staff stick around for years) then you’ll be spending a lot of money. …and the one I’ve added:

8. Powerful does not mean easy to learn — The ‘it must be easy to use and intuitive’ design rationale is often the cause of badly designed CRM systems. Designers mistakenly design something simple when they should be designing something powerful. Powerful is complicated, dense, and often less easy to learn, but once mastered lets staff really motor.

Our project focus

Our improvement of Trade Me Admin is focused on fixing the shattered IA and restructuring the key pages to make them perform even better, bringing them into a new code framework. We're not redesigning the reports, tools, code or even the interaction for most of the reports, as this will be many years of effort. Watching our own staff use Trade Me Admin is like watching someone juggling six or seven things.

The system requires them to visit multiple pages, hold multiple facts in their head, pattern and problem-match across those pages, and follow their professional intuition to get to the heart of a problem. Where the system works well is on some key, densely detailed hub pages. Where it works badly, staff have to navigate click farms with arbitrary link names, have to type across the URL to get to hidden reports, and generally expend more effort on finding the answer than on comprehending the answer.

Groundwork

The first thing that we did was to sit with CS and watch them work and get to know the common actions they perform. The random nature of the IA and the plethora of dead links and superseded reports became apparent. We surveyed teams, providing them with screen printouts and three highlighter pens to colour things as green (use heaps), orange (use sometimes) and red (never use). From this, we were able to immediately remove a lot of noise from the new IA. We also saw that specific teams used certain links but that everyone used a core set. Initially focussing on the core set, we set about understanding the tasks under those links.

The complexity of the job soon became apparent – with a complex system like Trade Me Admin, it is possible to do the same thing in many different ways. Most CRM systems are complex and detailed enough for there to be more than one way to achieve the same end and often, it’s not possible to get a definitive answer, only possible to ‘build a picture’. There’s no one-to-one mapping of task to link. Links were also often arbitrarily named: ‘SQL Lookup’ being an example. The highly-trained user base are dependent on muscle memory in finding these links. This meant that when asked something like: “What and where is the policing enquiry function?”, many couldn’t tell us what or where it was, but when they needed the report it contained they found it straight away.

Sort of difficult

Therefore, it came as little surprise that staff found the subsequent card sort task quite hard. We renamed the links to better describe their associated actions, and of course, they weren't in the same location as in Trade Me Admin. So instead of taking the predicted 20 minutes, the sort was taking upwards of 40 minutes. Not great when staff are supposed to be answering customer enquiries!

We noticed some strong trends in the results, with links clustering around some of the key pages and tasks (like 'member', 'listing', 'review member financials', and so on). The results also confirmed something that we had observed — that there is a strong split between two types of information: emails/tickets/notes and member info/listing info/reports.

We built and tested two IAs

pietree results tree testing

After card sorting, we created two new IAs, and then customized one of the IAs for each of the three CS teams, giving us IAs to test. Each team was then asked to complete two tree tests, with 50% doing one first and 50% doing the other first. At first glance, the results of the tree test were okay — around 61% — but 'Could try harder'. We saw very little overall difference between the success of the two structures, but definitely some differences in task success. And we also came across an interesting quirk in the results.

Closer analysis of the pie charts with an expert in Trade Me Admin showed that some ‘wrong’ answers would give part of the picture required. In some cases so much so that I reclassified answers as ‘correct’ as they were more right than wrong. Typically, in a real world situation, staff might check several reports in order to build a picture. This ambiguous nature is hard to replicate in a tree test which wants definitive yes or no answers. Keeping the tasks both simple to follow and comprehensive proved harder than we expected.

For example, we set a task that asked participants to investigate whether two customers had been bidding on each other's auctions. When we looked at the pietree (see screenshot below), we noticed some participants had clicked on 'Search Members', thinking they needed to locate the customer accounts, when the task had presumed that the customers had already been found. This is a useful insight into writing more comprehensive tasks that we can take with us into our next tests.  

What’s clear from analysis is that although it’s possible to provide definitive answers for a typical site’s IAs, for a CRM like Trade Me Admin this is a lot harder. Devising and testing the structure of a CRM has proved a challenge for our highly trained audience, who are used to the current system and naturally find it difficult to see and do things differently. Once we had reclassified some of the answers as ‘correct’ one of the two trees was a clear winner — it had gone from 61% to 69%. The other tree had only improved slightly, from 61% to 63%.

There were still elements with it that were performing sub-optimally in our winning structure, though. Generally, the problems were to do with labelling, where, in some cases, we had attempted to disambiguate those ‘SQL lookup’-type labels but in the process, confused the team. We were left with the dilemma of whether to go with the new labels and make the system initially harder to use for staff but easier to learn for new staff, or stick with the old labels, which are harder to learn. My view is that any new system is going to see an initial performance dip, so we might as well change the labels now and make it better.

The importance of carefully structuring questions in a tree test has been highlighted, particularly in light of the ‘start anywhere/go anywhere’ nature of a CRM. The diffuse but powerful nature of a CRM means that careful consideration of tree test answer options needs to be made, in order to decide ‘how close to 100% correct answer’ you want to get.

Development work has begun so watch this space

It's great to see that our research is influencing the next stage of the CRM system, and we're looking forward to seeing it go live. Of course, our work isn't over— and nor would we want it to be! Alongside the redevelopment of the IA, I've been redesigning the key pages from Trade Me Admin, and continuing to conduct user research, including first click testing using Chalkmark.

This project has been governed by a steadily developing set of design principles, focused on complex CRM systems and the specific needs of their audience. Two of these principles are to reduce navigation and to design for experts, not novices, which means creating dense, detailed pages. It's intense, complex, and rewarding design work, and we'll be exploring this exciting space in more depth in upcoming posts.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.