March 21, 2025
10

From Projects to Products: A Growing Career Trend

Introduction

The skills market has a familiar whiff to it. A decade ago, digital execs scratched their heads as great swathes of the delivery workforce decided to retrain as User Experience experts. Project Managers and Business Analysts decided to muscle-in on the creative process that designers insisted was their purview alone. Win for systemised thinking. Loss for magic dust and mystery.

With UX, research and design roles being the first to hit the cutting room floor over the past 24 months, a lot of the responsibility to solve for those missing competencies in the product delivery cycle now resides with the T-shaped Product Managers, because their career origin story tends to embrace a broader foundation across delivery and design disciplines. And so, as UX course providers jostle for position in a distracted market, senior professionals are repackaging themselves as Product Managers.

Another Talent Migration? We’ve Seen This Before.

The skills market has a familiar whiff to it. A decade ago, Project Managers (PMs) and Business Analysts (BAs) pivoted into UX roles in their droves, chasing the north star of digital transformation and user-centric design. Now? The same opportunities to pivot are emerging again—this time into Product Management.

And if history is anything to go by, we already know how this plays out.

Between 2015 and 2019, UX job postings skyrocketed by 320%, fueled by digital-first strategies and a newfound corporate obsession with usability. PMs and BAs, sensing the shift, leaned into their adjacent skills—stakeholder management, process mapping, and research—and suddenly, UX wasn’t just for designers anymore. It was a business function.

Fast-forward to 2025, and Product Management is in the same phase of maturation and despite some Covid-led contraction, bouncing back to 5.1% growth. The role has evolved from feature shipping to strategic value creation while traditional project management roles are trending towards full-stack product managers who handle multiple aspects of product development with fractional PMs for part-time or project-based roles.

Why Is This Happening? The Data Tells the Story.

📈 Job postings for product management roles grew by 41% between 2020 and 2025, compared to a 23% decline in traditional project management roles during the same period (Indeed Labor Market Analytics).

📉 The demand for product managers has been growing, with roles increasing by 32% yearly in general terms, as mentioned in some reports.

💰 Salary Shenanigans: Product Managers generally earn higher salaries than Business Analysts. In the U.S., PMs earn about 45% more than BAs on average ($124,000 vs. $85,400). In Australia, PMs earn about 4% to 30% more than BAs ($130,000 vs. $105,000 to $125,000) wave.

Three Structural Forces Driving the Shift

  1. Agile and Product-Led Growth Have Blurred the Lines
    Project success is no longer measured in timelines and budgets—it’s about customer lifetime value (CLTV) and feature adoption rates. For instance, 86% of teams have adopted the Agile approach, and 63% of IT teams are also using Agile methodologies forcing PMs to move beyond execution into continuous iteration and outcome-based thinking.
  2. Data Is the New Currency, and BAs Are Cashing In
    89% of product decisions in 2025 rely on analytics (Gartner, 2024). That’s prime territory for BAs, whose SQL skills, A/B testing expertise, and KPI alignment instincts make them critical players in data-driven product strategy.
  3. Role Consolidation Is Inevitable
    The post-pandemic belt-tightening has left one role doing the job of three. Today’s product managers don’t just prioritise backlogs - they manage stakeholders, interpret data, and (sometimes poorly) sketch out UX wireframes. Product manager job descriptions now list "requirements gathering" and "stakeholder management"—once core PM/BA responsibilities.

How This Mirrors the UX Migration of 2019

Source 1 - Source 2

Same pattern. Different discipline.

The Challenges of Becoming a Product Manager (and Why Some Will Struggle)

👀 Outputs vs. Outcomes – PMs think in deliverables. Transitioning PMs struggle to adjust to measuring success through customer impact instead of project completion.

🛠️ Legacy Tech Debt – Outdated tech stacks can lead to decreased productivity, integration issues, and security concerns. This complexity can slow down operations and hinder the efficiency of teams, including product management.

😰 Imposter Syndrome is Real – New product managers feel unqualified, mirroring the self-doubt UX migrants felt in 2019. Because let’s be honest—jumping into product strategy is a different beast from managing deliverables.

What Comes Next? The Smartest Companies Are Already Preparing.

🏆 Structured Reskilling – Programs like Google’s "PM Launchpad" reduce time-to-proficiency for new PMs. Enterprises that invest in structured career shifts will win the talent war.

📊 Hybrid Role Recognition – Expect to see “Analytics-Driven PM” and “Technical Product Owner” job titles formalising this shift, much like “UX Strategist” emerged post-2019.

🚀 AI Will Accelerate the Next Migration – As AI automates routine PM/BA tasks, expect even more professionals to pivot into strategic product roles. The difference? This time, the transition will be even faster.

Conclusion: The Cycle Continues

Tech talent moves in cycles. Product Management is simply the next career gold rush for systems thinkers with a skill for structure, process, and problem-solving. A structural response to the evolution of tech ecosystems.

Companies that recognise and support this transition will outpace those still clinging to rigid org charts. Because one thing is clear—the talent migration isn’t coming. It’s already here.

This article was researched with the help of Perplexity.ai

Share this article
Author
Optimal
Workshop
Topics

Related articles

View all blog articles
Learn more
1 min read

AI Is Only as Good as Its UX: Why User Experience Tops Everything

AI is transforming how businesses approach product development. From AI-powered chatbots and recommendation engines to predictive analytics and generative models, AI-first products are reshaping user interactions with technology, which in turn impacts every phase of the product development lifecycle.

Whether you're skeptical about AI or enthusiastic about its potential, the fundamental truth about product development in an AI-driven future remains unchanged: a product is only as good as its user experience.

No matter how powerful the underlying AI, if users don't trust it, can't understand it, or struggle to use it, the product will fail. Good UX isn't simply an add-on for AI-first products, it's a fundamental requirement.

Why UX Is More Critical Than Ever

Unlike traditional software, where users typically follow structured, planned workflows, AI-first products introduce dynamic, unpredictable experiences. This creates several unique UX challenges:

  • Users struggle to understand AI's decisions – Why did the AI generate this particular response? Can they trust it?
  • AI doesn't always get it right – How does the product handle mistakes, errors, or bias?
  • Users expect AI to "just work" like magic – If interactions feel confusing, people will abandon the product.

AI only succeeds when it's intuitive, accessible, and easy-to-use: the fundamental components of good user experience. That's why product teams need to embed strong UX research and design into AI development, right from the start.

Key UX Focus Areas for AI-First Products

To Trust Your AI, Users Need to Understand It

AI can feel like a black box, users often don't know how it works or why it's making certain decisions or recommendations. If people don't understand or trust your AI, they simply won't use it. The user experiences you need to build for an AI-first product must be grounded in transparency.

What does a transparent experience look like?

  • Show users why AI makes certain decisions (e.g., "Recommended for you because…")
  • Allow users to adjust AI settings to customize their experience
  • Enable users to provide feedback when AI gets something wrong—and offer ways to correct it

A strong example: Spotify's AI recommendations explain why a song was suggested, helping users understand the reasoning behind specific song recommendations.

AI Should Augment Human Expertise Not Replace It

AI often goes hand-in-hand with automation, but this approach ignores one of AI's biggest limitations: incorporating human nuance and intuition into recommendations or answers. While AI products strive to feel seamless and automated, users need clarity on what's happening when AI makes mistakes.

How can you address this? Design for AI-Human Collaboration:

  • Guide users on the best ways to interact with and extract value from your AI
  • Provide the ability to refine results so users feel in control of the end output
  • Offer a hybrid approach: allow users to combine AI-driven automation with manual/human inputs

Consider Google's Gemini AI, which lets users edit generated responses rather than forcing them to accept AI's output as final, a thoughtful approach to human-AI collaboration.

Validate and Test AI UX Early and Often

Because AI-first products offer dynamic experiences that can behave unpredictably, traditional usability testing isn't sufficient. Product teams need to test AI interactions across multiple real-world scenarios before launch to ensure their product functions properly.

Run UX Research to Validate AI Models Throughout Development:

  • Implement First Click Testing to verify users understand where to interact with AI
  • Use Tree Testing to refine chatbot flows and decision trees
  • Conduct longitudinal studies to observe how users interact with AI over time

One notable example: A leading tech company used Optimal to test their new AI product with 2,400 global participants, helping them refine navigation and conversion points, ultimately leading to improved engagement and retention.

The Future of AI Products Relies on UX

The bottom line is that AI isn't replacing UX, it's making good UX even more essential. The more sophisticated the product, the more product teams need to invest in regular research, transparency, and usability testing to ensure they're building products people genuinely value and enjoy using.

Want to improve your AI product's UX? Start testing with Optimal today.

Learn more
1 min read

The future of UX research: AI's role in analysis and synthesis

As artificial intelligence (AI) continues to advance and permeate various industries, the field of user experience (UX) research is no exception. 

At Optimal Workshop, our recent Value of UX report revealed that 68% of UX professionals believe AI will have the greatest impact on analysis and synthesis in the research project lifecycle. In this article, we'll explore the current and potential applications of AI in UXR, its limitations, and how the role of UX researchers may evolve alongside these technological advancements.

How researchers are already using AI

AI is already making inroads in UX research, primarily in tasks that involve processing large amounts of data, such as

  • Automated transcription: AI-powered tools can quickly transcribe user interviews and focus group sessions, saving researchers significant time.

  • Sentiment analysis: Machine learning algorithms can analyze text data from surveys or social media to gauge overall user sentiment towards a product or feature.

  • Pattern recognition: AI can help identify recurring themes or issues in large datasets, potentially surfacing insights that might be missed by human researchers.

  • Data visualization: AI-driven tools can create interactive visualizations of complex data sets, making it easier for researchers to communicate findings to stakeholders.

As AI technology continues to evolve, its role in UX research is poised to expand, offering even more sophisticated tools and capabilities. While AI will undoubtedly enhance efficiency and uncover deeper insights, it's important to recognize that human expertise remains crucial in interpreting context, understanding nuanced user needs, and making strategic decisions. 

The future of UX research lies in the synergy between AI's analytical power and human creativity and empathy, promising a new era of user-centered design that is both data-driven and deeply insightful.

The potential for AI to accelerate UXR processes

As AI capabilities advance, the potential to accelerate UX research processes grows exponentially. We anticipate AI revolutionizing UXR by enabling rapid synthesis of qualitative data, offering predictive analysis to guide research focus, automating initial reporting, and providing real-time insights during user testing sessions. 

These advancements could dramatically enhance the efficiency and depth of UX research, allowing researchers to process larger datasets, uncover hidden patterns, and generate insights faster than ever before. As we continue to develop our platform, we're exploring ways to harness these AI capabilities, aiming to empower UX professionals with tools that amplify their expertise and drive more impactful, data-driven design decisions.

AI’s good, but it’s not perfect

While AI shows great promise in accelerating certain aspects of UX research, it's important to recognize its limitations, particularly when it comes to understanding the nuances of human experience. AI may struggle to grasp the full context of user responses, missing subtle cues or cultural nuances that human researchers would pick up on. Moreover, the ability to truly empathize with users and understand their emotional responses is a uniquely human trait that AI cannot fully replicate. These limitations underscore the continued importance of human expertise in UX research, especially when dealing with complex, emotionally-charged user experiences.

Furthermore, the creative problem-solving aspect of UX research remains firmly in the human domain. While AI can identify patterns and trends with remarkable efficiency, the creative leap from insight to innovative solution still requires human ingenuity. UX research often deals with ambiguous or conflicting user feedback, and human researchers are better equipped to navigate these complexities and make nuanced judgment calls. As we move forward, the most effective UX research strategies will likely involve a symbiotic relationship between AI and human researchers, leveraging the strengths of both to create more comprehensive, nuanced, and actionable insights.

Ethical considerations and data privacy concerns‍

As AI becomes more integrated into UX research processes, several ethical considerations come to the forefront. Data security emerges as a paramount concern, with our report highlighting it as a significant factor when adopting new UX research tools. Ensuring the privacy and protection of user data becomes even more critical as AI systems process increasingly sensitive information. Additionally, we must remain vigilant about potential biases in AI algorithms that could skew research results or perpetuate existing inequalities, potentially leading to flawed design decisions that could negatively impact user experiences.

Transparency and informed consent also take on new dimensions in the age of AI-driven UX research. It's crucial to maintain clarity about which insights are derived from AI analysis versus human interpretation, ensuring that stakeholders understand the origins and potential limitations of research findings. As AI capabilities expand, we may need to revisit and refine informed consent processes, ensuring that users fully comprehend how their data might be analyzed by AI systems. These ethical considerations underscore the need for ongoing dialogue and evolving best practices in the UX research community as we navigate the integration of AI into our workflows.

The evolving role of researchers in the age of AI

As AI technologies advance, the role of UX researchers is not being replaced but rather evolving and expanding in crucial ways. Our Value of UX report reveals that while 35% of organizations consider their UXR practice to be "strategic" or "leading," there's significant room for growth. This evolution presents an opportunity for researchers to focus on higher-level strategic thinking and problem-solving, as AI takes on more of the data processing and initial analysis tasks.

The future of UX research lies in a symbiotic relationship between human expertise and AI capabilities. Researchers will need to develop skills in AI collaboration, guiding and interpreting AI-driven analyses to extract meaningful insights. Moreover, they will play a vital role in ensuring the ethical use of AI in research processes and critically evaluating AI-generated insights. As AI becomes more prevalent, UX researchers will be instrumental in bridging the gap between technological capabilities and genuine human needs and experiences.

Democratizing UXR through AI

The integration of AI into UX research processes holds immense potential for democratizing the field, making advanced research techniques more accessible to a broader range of organizations and professionals. Our report indicates that while 68% believe AI will impact analysis and synthesis, only 18% think it will affect co-presenting findings, highlighting the enduring value of human interpretation and communication of insights.

At Optimal Workshop, we're excited about the possibilities AI brings to UX research. We envision a future where AI-powered tools can lower the barriers to entry for conducting comprehensive UX research, allowing smaller teams and organizations to gain deeper insights into their users' needs and behaviors. This democratization could lead to more user-centered products and services across various industries, ultimately benefiting end-users.

However, as we embrace these technological advancements, it's crucial to remember that the core of UX research remains fundamentally human. The unique skills of empathy, contextual understanding, and creative problem-solving that human researchers bring to the table will continue to be invaluable. As we move forward, UX researchers must stay informed about AI advancements, critically evaluate their application in research processes, and continue to advocate for the human-centered approach that is at the heart of our field.

By leveraging AI to handle time-consuming tasks and uncover patterns in large datasets, researchers can focus more on strategic interpretation, ethical considerations, and translating insights into impactful design decisions. This shift not only enhances the value of UX research within organizations but also opens up new possibilities for innovation and user-centric design.

As we continue to develop our platform at Optimal Workshop, we're committed to exploring how AI can complement and amplify human expertise in UX research, always with the goal of creating better user experiences.

The future of UX research is bright, with AI serving as a powerful tool to enhance our capabilities, democratize our practices, and ultimately create more intuitive, efficient, and delightful user experiences for people around the world.

Learn more
1 min read

Optimal vs. Maze: Deep User Insights or Surface-Level Design Feedback

Product teams face an important decision when selecting the right user research platform: do they prioritize speed and simplicity, or invest in a more comprehensive platform that offers real research depth and insights? This choice becomes even more critical as user research scales and those insights directly influence major product decisions.

Maze has gained popularity in recent years among design and product teams for its focus on rapid prototype testing and design workflow integration. However, as teams scale their research programs and require more sophisticated insights, many discover that Maze's limitations outweigh its simplicity. Platform stability issues, restricted tools and functionality, and a lack of enterprise features creates friction that end up compromising insight speed, quality and overall business impact.

Why Choose Optimal instead of Maze?

Platform Depth

Test Design Flexibility

Optimal Offers Comprehensive Test Flexibility: Optimal has a Figma integration, image import capabilities, and fully customizable test flows designed for agile product teams.

Maze has Rigid Question Types: In contrast, Maze's focus on speed comes with design inflexibility, including rigid question structures and limited customization options that reduce overall test effectiveness.

Live Site Testing

Optimal Delivers Comprehensive Live Site Testing: Optimal's live site testing allows you to test your actual website or web app in real-time with real users, gathering behavioral data and usability insights post-launch without any code requirements. This enables continuous testing and iteration even after products are in users' hands.

Maze Offers Basic Live Website Testing: While Maze provides live website testing capabilities, its focus remains primarily on unmoderated studies with limited depth for ongoing site optimization.

Interview and Moderated Research Capabilities

Optimal Interviews Transforms Research Analysis: Optimal's new Interviews tool revolutionizes how teams extract insights from user research. Upload interview videos and let AI automatically surface key themes, generate smart highlight reels, create timestamped transcripts, and produce actionable insights in hours instead of weeks. Every insight comes with supporting video evidence, making it easy to back up recommendations with real user feedback and share compelling clips with stakeholders.

Maze Interview Studies Requires Enterprise Plan: Maze's Interview Studies feature for moderated research is only available on their highest-tier Organization plan, putting live moderated sessions out of reach for small and mid-sized teams. Teams on lower tiers must rely solely on unmoderated testing or use separate tools for interviews.

Prototype Testing Capabilities

Optimal has Advanced Prototype Testing: Optimal supports sophisticated prototype testing with full Figma integration, comprehensive interaction capture, and flexible testing methods that accommodate modern product design and development workflows.

Maze has Limited Prototype Support: Users report difficulties with Maze's prototype testing capabilities, particularly with complex interactions and advanced design systems that modern products require.

Analysis and Reporting Quality

Optimal has Rich, Actionable Insights: Optimal delivers AI-powered analysis with layered insights, export-ready reports, and sophisticated visualizations that transform data into actionable business intelligence.

Maze Only Offers Surface-Level Reporting: Maze provides basic metrics and surface-level analysis without the depth required for strategic decision-making or comprehensive user insight.

Enterprise Features

Dedicated Enterprise Support

Optimal Provides Dedicated Enterprise Support: Optimal offers fast, personalized support with dedicated account teams and comprehensive training resources built by user experience experts that ensure your team is set up for success.

Maze has a Reactive Support Model: Maze provides responsive support primarily for critical issues but lacks the proactive, dedicated support enterprise product teams require.

Enterprise Readiness

Optimal is an Enterprise-Built Platform: Optimal was designed for enterprise use with comprehensive security protocols, compliance certifications, and scalability features that support large research programs across multiple teams and business units. Optimal is currently trusted by some of the world's biggest brands including Netflix, Lego and Nike.

Maze is Built for Individuals: Maze was built primarily for individual designers and small teams, lacking the enterprise features, compliance capabilities, and scalability that large organizations need.

Enterprises Need Reliable, Scalable User Insights

While Maze's focus on speed appeals to design teams seeking rapid iteration, enterprise product teams need the stability and reliability that only mature platforms provide. Optimal delivers both speed and dependability, enabling teams to iterate quickly without compromising research quality or business impact. Platform reliability isn't just about uptime, it's about helping product teams make high quality strategic decisions and to build organizational confidence in user insights. Mature product, design and UX teams need to choose platforms that enhance rather than undermine their research credibility.

Don't let platform limitations compromise your research potential.

Ready to see how leading brands including Lego, Netflix and Nike achieve better research outcomes? Experience how Optimal's platform delivers user insights that adapt to your team's growing needs.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.