2 min

Insights & AI Beta

Optimal Workshop

As part of our beta release, you'll gain access to the newest enhancements to our Qualitative Insights tool (previously known as Reframer).

  1. Insights: A dedicated space to create, organize, and communicate your key takeaways. Create Insights on your own or with AI.
  2. AI capabilities: Optional AI-powered assistance to create Insights from your observations to accelerate your analysis process.

Our new Insights and AI functionality streamlines your qualitative analysis process, allowing you to quickly summarize, create, and organize key takeaways from your data.

Help documentation

  1. How AI Insights clustering works in Optimal
  2. Create an Insight with and without AI
  3. How AI generated Insights work in Optimal
  4. Our AI guiding principles
  5. How to set your preferences for AI
  6. Analyzing & sharing your Insights
  7. Learn more about Qualitative Insights

Notes on AI Privacy & Security


Optimal uses AWS Amazon Bedrock, which is the fully managed service that makes large language models (LLMs) from Amazon and leading AI startups available through an API, for AI generation for Qualitative Insights.


Amazon Bedrock meets industry-leading standards for compliance, including: ISO, SOC, CSA STAR Level 2, GDPR, and HIPAA eligible. Learn more about Amazon Bedrock.

We take your privacy seriously. When you use AI Insights: 

  1. Your data stays within your organization
  2. We don't use it to train other AI models
  3. You control when to use AI for insights
  4. AI features can be turned on or off anytime

Questions & feedback

If you have any questions, please reach out to our support team via live chat.

We appreciate any feedback you have on improving your experience and invite you to share your thoughts through this feedback form at anytime. Our product team will also be in touch mid-late October to to gather further insights about your experience.

Publishing date
Share this article
Topics

Related articles

min read
Clara Kliman-Silver: AI & design: imagining the future of UX

In the last few years, the influence of AI has steadily been expanding into various aspects of design. In early 2023, that expansion exploded. AI tools and features are now everywhere, and there are two ways designers commonly react to it:

  • With enthusiasm for how they can use it to make their jobs easier
  • With skepticism over how reliable it is, or even fear that it could replace their jobs

Google UX researcher Clara Kliman-Silver is at the forefront of researching and understanding the potential impact of AI on design into the future. This is a hot topic that’s on the radar of many designers as they grapple with what the new normal is, and how it will change things in the coming years.

Clara’s background 

Clara Kliman-Silver spends her time studying design teams and systems, UX tools and designer-developer collaboration. She’s a specialist in participatory design and uses generative methods to investigate workflows, understand designer-developer experiences, and imagine ways to create UIs. In this work, Clara looks at how technology can be leveraged to help people make things, and do it more efficiently than they currently are.

In today’s context, that puts generative AI and machine learning right in her line of sight. The way this technology has boomed in recent times has many people scrambling to catch up - to identify the biggest opportunities and to understand the risks that come with it. Clara is a leader in assessing the implications of AI. She analyzes both the technology itself and the way people feel about it to forecast what it will mean into the future.

Contact Details:

You can find Clara in LinkedIn or on Twitter @cklimansilver

What role should artificial intelligence play in UX design process? 🤔

Clara’s expertise in understanding the role of AI in design comes from significant research and analysis of how the technology is being used currently and how industry experts feel about it. AI is everywhere in today’s world, from home devices to tech platforms and specific tools for various industries. In many cases, AI automation is used for productivity, where it can speed up processes with subtle, easy to use applications.

As mentioned above, the transformational capabilities of AI are met with equal parts of enthusiasm and skepticism. The way people use AI, and how they feel about it is important, because users need to be comfortable implementing the technology in order for it to make a difference. The question of what value AI brings to the design process is ongoing. On one hand, AI can help increase efficiency for systems and processes. On the other hand, it can exacerbate problems if the user's intentions are misunderstood.

Access for all 🦾

There’s no doubt that AI tools enable novices to perform tasks that, in years gone by, required a high level of expertise. For example, film editing was previously a manual task, where people would literally cut rolls of film and splice them together on a reel. It was something only a trained editor could do. Now, anyone with a smartphone has access to iMovie or a similar app, and they can edit film in seconds.

For film experts, digital technology allows them to speed up tedious tasks and focus on more sophisticated aspects of their work. Clara hypothesizes that AI is particularly valuable when it automates mundane tasks. AI enables more individuals to leverage digital technologies without requiring specialist training. Thus, AI has shifted the landscape of what it means to be an “expert” in a field. Expertise is about more than being able to simply do something - it includes having the knowledge and experience to do it for an informed reason. 

Research and testing 🔬

Clara performs a lot of concept testing, which involves recognizing the perceived value of an approach or method. Concept testing helps in scenarios where a solution may not address a problem or where the real problem is difficult to identify. In a recent survey, Clara describes two predominant benefits designers experienced from AI:

  1. Efficiency. Not only does AI expedite the problem solving process, it can also help efficiently identify problems. 
  2. Innovation. Generative AI can innovate on its own, developing ideas that designers themselves may not have thought of.

The design partnership 🤝🏽

Overall, Clara says UX designers tend to see AI as a creative partner. However, most users don’t yet trust AI enough to give it complete agency over the work it’s used for. The level of trust designers have exists on a continuum, where it depends on the nature of the work and the context of what they’re aiming to accomplish. Other factors such as where the tech comes from, who curated it and who’s training the model also influences trust. For now, AI is largely seen as a valued tool, and there is cautious optimism and tentative acceptance for its application. 

Why it matters 💡

AI presents as potentially one of the biggest game-changers to how people work in our generation. Although AI has widespread applications across sectors and systems, there are still many questions about it. In the design world, systems like DALL-E allow people to create AI-generated imagery, and auto layout in various tools allows designers to iterate more quickly and efficiently.

Like many other industries, designers are wondering where AI might go in the future and what it might look like. The answer to these questions has very real implications for the future of design jobs and whether they will exist. In practice, Clara describes the current mood towards AI as existing on a continuum between adherence and innovation:

  • Adherence is about how AI helps designers follow best practice
  • Innovation is at the other end of the spectrum, and involves using AI to figure out what’s possible

The current environment is extremely subjective, and there’s no agreed best practice. This makes it difficult to recommend a certain approach to adopting AI and creating permanent systems around it. Both the technology and the sentiment around it will evolve through time, and it’s something designers, like all people, will need to maintain good awareness of.

min read
The future of UX research: AI's role in analysis and synthesis ✨📝

As artificial intelligence (AI) continues to advance and permeate various industries, the field of user experience (UX) research is no exception. 

At Optimal Workshop, our recent Value of UX report revealed that 68% of UX professionals believe AI will have the greatest impact on analysis and synthesis in the research project lifecycle. In this article, we'll explore the current and potential applications of AI in UXR, its limitations, and how the role of UX researchers may evolve alongside these technological advancements.

How researchers are already using AI 👉📝

AI is already making inroads in UX research, primarily in tasks that involve processing large amounts of data, such as

  • Automated transcription: AI-powered tools can quickly transcribe user interviews and focus group sessions, saving researchers significant time.

  • Sentiment analysis: Machine learning algorithms can analyze text data from surveys or social media to gauge overall user sentiment towards a product or feature.

  • Pattern recognition: AI can help identify recurring themes or issues in large datasets, potentially surfacing insights that might be missed by human researchers.

  • Data visualization: AI-driven tools can create interactive visualizations of complex data sets, making it easier for researchers to communicate findings to stakeholders.

As AI technology continues to evolve, its role in UX research is poised to expand, offering even more sophisticated tools and capabilities. While AI will undoubtedly enhance efficiency and uncover deeper insights, it's important to recognize that human expertise remains crucial in interpreting context, understanding nuanced user needs, and making strategic decisions. 

The future of UX research lies in the synergy between AI's analytical power and human creativity and empathy, promising a new era of user-centered design that is both data-driven and deeply insightful.

The potential for AI to accelerate UXR processes ✨ 🚀

As AI capabilities advance, the potential to accelerate UX research processes grows exponentially. We anticipate AI revolutionizing UXR by enabling rapid synthesis of qualitative data, offering predictive analysis to guide research focus, automating initial reporting, and providing real-time insights during user testing sessions. 

These advancements could dramatically enhance the efficiency and depth of UX research, allowing researchers to process larger datasets, uncover hidden patterns, and generate insights faster than ever before. As we continue to develop our platform, we're exploring ways to harness these AI capabilities, aiming to empower UX professionals with tools that amplify their expertise and drive more impactful, data-driven design decisions.

AI’s good, but it’s not perfect 🤖🤨

While AI shows great promise in accelerating certain aspects of UX research, it's important to recognize its limitations, particularly when it comes to understanding the nuances of human experience. AI may struggle to grasp the full context of user responses, missing subtle cues or cultural nuances that human researchers would pick up on. Moreover, the ability to truly empathize with users and understand their emotional responses is a uniquely human trait that AI cannot fully replicate. These limitations underscore the continued importance of human expertise in UX research, especially when dealing with complex, emotionally-charged user experiences.

Furthermore, the creative problem-solving aspect of UX research remains firmly in the human domain. While AI can identify patterns and trends with remarkable efficiency, the creative leap from insight to innovative solution still requires human ingenuity. UX research often deals with ambiguous or conflicting user feedback, and human researchers are better equipped to navigate these complexities and make nuanced judgment calls. As we move forward, the most effective UX research strategies will likely involve a symbiotic relationship between AI and human researchers, leveraging the strengths of both to create more comprehensive, nuanced, and actionable insights.

Ethical considerations and data privacy concerns 🕵🏼‍♂️✨

As AI becomes more integrated into UX research processes, several ethical considerations come to the forefront. Data security emerges as a paramount concern, with our report highlighting it as a significant factor when adopting new UX research tools. Ensuring the privacy and protection of user data becomes even more critical as AI systems process increasingly sensitive information. Additionally, we must remain vigilant about potential biases in AI algorithms that could skew research results or perpetuate existing inequalities, potentially leading to flawed design decisions that could negatively impact user experiences.

Transparency and informed consent also take on new dimensions in the age of AI-driven UX research. It's crucial to maintain clarity about which insights are derived from AI analysis versus human interpretation, ensuring that stakeholders understand the origins and potential limitations of research findings. As AI capabilities expand, we may need to revisit and refine informed consent processes, ensuring that users fully comprehend how their data might be analyzed by AI systems. These ethical considerations underscore the need for ongoing dialogue and evolving best practices in the UX research community as we navigate the integration of AI into our workflows.

The evolving role of researchers in the age of AI ✨🔮

As AI technologies advance, the role of UX researchers is not being replaced but rather evolving and expanding in crucial ways. Our Value of UX report reveals that while 35% of organizations consider their UXR practice to be "strategic" or "leading," there's significant room for growth. This evolution presents an opportunity for researchers to focus on higher-level strategic thinking and problem-solving, as AI takes on more of the data processing and initial analysis tasks.

The future of UX research lies in a symbiotic relationship between human expertise and AI capabilities. Researchers will need to develop skills in AI collaboration, guiding and interpreting AI-driven analyses to extract meaningful insights. Moreover, they will play a vital role in ensuring the ethical use of AI in research processes and critically evaluating AI-generated insights. As AI becomes more prevalent, UX researchers will be instrumental in bridging the gap between technological capabilities and genuine human needs and experiences.

Democratizing UXR through AI 🌎✨

The integration of AI into UX research processes holds immense potential for democratizing the field, making advanced research techniques more accessible to a broader range of organizations and professionals. Our report indicates that while 68% believe AI will impact analysis and synthesis, only 18% think it will affect co-presenting findings, highlighting the enduring value of human interpretation and communication of insights.

At Optimal Workshop, we're excited about the possibilities AI brings to UX research. We envision a future where AI-powered tools can lower the barriers to entry for conducting comprehensive UX research, allowing smaller teams and organizations to gain deeper insights into their users' needs and behaviors. This democratization could lead to more user-centered products and services across various industries, ultimately benefiting end-users.

However, as we embrace these technological advancements, it's crucial to remember that the core of UX research remains fundamentally human. The unique skills of empathy, contextual understanding, and creative problem-solving that human researchers bring to the table will continue to be invaluable. As we move forward, UX researchers must stay informed about AI advancements, critically evaluate their application in research processes, and continue to advocate for the human-centered approach that is at the heart of our field.

By leveraging AI to handle time-consuming tasks and uncover patterns in large datasets, researchers can focus more on strategic interpretation, ethical considerations, and translating insights into impactful design decisions. This shift not only enhances the value of UX research within organizations but also opens up new possibilities for innovation and user-centric design.

As we continue to develop our platform at Optimal Workshop, we're committed to exploring how AI can complement and amplify human expertise in UX research, always with the goal of creating better user experiences.

The future of UX research is bright, with AI serving as a powerful tool to enhance our capabilities, democratize our practices, and ultimately create more intuitive, efficient, and delightful user experiences for people around the world.

min read
The Power of Prototype Testing Live Training

If you missed our recent live training on Prototype Testing, don’t worry—we’ve got everything you need right here! You can catch up at your convenience, so grab a cup of tea, put your feet up, and enjoy the show.

In the session, we explored the powerful new features of our Prototype Testing tool, offering a step-by-step guide to setting up, running, and analyzing your tests like a seasoned pro. This tool is a game-changer for your design workflow, helping you identify usability issues and gather real user feedback before committing significant resources to development.


Here’s a quick recap of the highlights:

1. Creating a prototype test from scratch using images

We walked through how to create a prototype test from scratch using static images. This method is perfect for early-stage design concepts, where you want to quickly test user flows without a fully interactive prototype.

2. Preparing your Figma prototype for testing

Figma users, we’ve got you covered! We discussed how to prepare your Figma prototype for the smoothest possible testing experience. From setting up interactions to ensuring proper navigation, these tips ensure participants have an intuitive experience during the test. For more detailed instructions, check out our help article 

3. Seamless Figma prototype imports

One of the standout features of the tool is its seamless integration with Figma. We showed how easy it is to import your designs directly from Figma into Optimal, streamlining the setup process. You can bring your working files straight in, and resync when you need to with one click of a button.

4. Understanding usability metrics and analyzing results

We explored how to analyze the usability metrics, and walked through what the results can indicate on click maps and paths. These visual tools allow you to see exactly how participants navigate your design, making it easier to spot pain points, dead ends, or areas of friction. By understanding user behavior, you can rapidly iterate and refine your prototypes for optimal user experience.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.