March 21, 2025
10

The Evolution of UX Research: Digital Twins and the Future of User Insight

Introduction

User Experience (UX) research has always been about people. How they think, how they behave, what they need, and—just as importantly—what they don’t yet realise they need. Traditional UX methodologies have long relied on direct human input: interviews, usability testing, surveys, and behavioral observation. The assumption was clear—if you want to understand people, you have to engage with real humans.

But in 2025, that assumption is being challenged.

The emergence of digital twins and synthetic users—AI-powered simulations of human behavior—is changing how researchers approach user insights. These technologies claim to solve persistent UX research problems: slow participant recruitment, small sample sizes, high costs, and research timelines that struggle to keep pace with product development. The promise is enticing: instantly accessible, infinitely scalable users who can test, interact, and generate feedback without the logistical headaches of working with real participants.

Yet, as with any new technology, there are trade-offs. While digital twins may unlock efficiencies, they also raise important questions: Can they truly replicate human complexity? Where do they fit within existing research practices? What risks do they introduce?

This article explores the evolving role of digital twins in UX research—where they excel, where they fall short, and what their rise means for the future of human-centered design.

The Traditional UX Research Model: Why Change?

For decades, UX research has been grounded in methodologies that involve direct human participation. The core methods—usability testing, user interviews, ethnographic research, and behavioral analytics—have been refined to account for the unpredictability of human nature.

This approach works well, but it has challenges:

  1. Participant recruitment is time-consuming. Finding the right users—especially niche audiences—can be a logistical hurdle, often requiring specialised panels, incentives, and scheduling gymnastics.
  2. Research is expensive. Incentives, moderation, analysis, and recruitment all add to the cost. A single usability study can run into tens of thousands of dollars.
  3. Small sample sizes create risk. Budget and timeline constraints often mean testing with small groups, leaving room for blind spots and bias.
  4. Long feedback loops slow decision-making. By the time research is completed, product teams may have already moved on, limiting its impact.

In short: traditional UX research provides depth and authenticity, but it’s not always fast or scalable.

Digital twins and synthetic users aim to change that.

What Are Digital Twins and Synthetic Users?

While the terms digital twins and synthetic users are sometimes used interchangeably, they are distinct concepts.

Digital Twins: Simulating Real-World Behavior

A digital twin is a data-driven virtual representation of a real-world entity. Originally developed for industrial applications, digital twins replicate machines, environments, and human behavior in a digital space. They can be updated in real time using live data, allowing organisations to analyse scenarios, predict outcomes, and optimise performance.

In UX research, human digital twins attempt to replicate real users' behavioral patterns, decision-making processes, and interactions. They draw on existing datasets to mirror real-world users dynamically, adapting based on real-time inputs.

Synthetic Users: AI-Generated Research Participants

While a digital twin is a mirror of a real entity, a synthetic user is a fabricated research participant—a simulation that mimics human decision-making, behaviors, and responses. These AI-generated personas can be used in research scenarios to interact with products, answer questions, and simulate user journeys.

Unlike traditional user personas (which are static profiles based on aggregated research), synthetic users are interactive and capable of generating dynamic feedback. They aren’t modeled after a specific real-world person, but rather a combination of user behaviors drawn from large datasets.

Think of it this way:

  • A digital twin is a highly detailed, data-driven clone of a specific person, customer segment, or process.
  • A synthetic user is a fictional but realistic simulation of a potential user, generated based on behavioral patterns and demographic characteristics.

Both approaches are still evolving, but their potential applications in UX research are already taking shape.

Where Digital Twins and Synthetic Users Fit into UX Research

The appeal of AI-generated users is undeniable. They can:

  • Scale instantly – Test designs with thousands of simulated users, rather than just a handful of real participants.
  • Eliminate recruitment bottlenecks – No need to chase down participants or schedule interviews.
  • Reduce costs – No incentives, no travel, no last-minute no-shows.
  • Enable rapid iteration – Get user insights in real time and adjust designs on the fly.
  • Generate insights on sensitive topics – Synthetic users can explore scenarios that real participants might find too personal or intrusive.

These capabilities make digital twins particularly useful for:

  • Early-stage concept validation – Rapidly test ideas before committing to development.
  • Edge case identification – Run simulations to explore rare but critical user scenarios.
  • Pre-testing before live usability sessions – Identify glaring issues before investing in human research.

However, digital twins and synthetic users are not a replacement for human research. Their effectiveness is limited in areas where emotional, cultural, and contextual factors play a major role.

The Risks and Limitations of AI-Driven UX Research

For all their promise, digital twins and synthetic users introduce new challenges.

  1. They lack genuine emotional responses.
    AI can analyse sentiment, but it doesn’t feel frustration, delight, or confusion the way a human does. UX is often about unexpected moments—the frustrations, workarounds, and “aha” realisations that define real-world use.
  2. Bias is a real problem.
    AI models are trained on existing datasets, meaning they inherit and amplify biases in those datasets. If synthetic users are based on an incomplete or non-diverse dataset, the research insights they generate will be skewed.
  3. They struggle with novelty.
    Humans are unpredictable. They find unexpected uses for products, misunderstand instructions, and behave irrationally. AI models, no matter how advanced, can only predict behavior based on past patterns—not the unexpected ways real users might engage with a product.
  4. They require careful validation.
    How do we know that insights from digital twins align with real-world user behavior? Without rigorous validation against human data, there’s a risk of over-reliance on synthetic feedback that doesn’t reflect reality.

A Hybrid Future: AI + Human UX Research

Rather than viewing digital twins as a replacement for human research, the best UX teams will integrate them as a complementary tool.

Where AI Can Lead:

  • Large-scale pattern identification
  • Early-stage usability evaluations
  • Speeding up research cycles
  • Automating repetitive testing

Where Humans Remain Essential:

  • Understanding emotion, frustration, and delight
  • Detecting unexpected behaviors
  • Validating insights with real-world context
  • Ethical considerations and cultural nuance

The future of UX research is not about choosing between AI and human research—it’s about blending the strengths of both.

Final Thoughts: Proceeding With Caution and Curiosity

Digital twins and synthetic users are exciting, but they are not a magic bullet. They cannot fully replace human users, and relying on them exclusively could lead to false confidence in flawed insights.

Instead, UX researchers should view these technologies as powerful, but imperfect tools—best used in combination with traditional research methods.

As with any new technology, thoughtful implementation is key. The real opportunity lies in designing research methodologies that harness the speed and scale of AI without losing the depth, nuance, and humanity that make UX research truly valuable.

The challenge ahead isn’t about choosing between human or synthetic research. It’s about finding the right balance—one that keeps user experience truly human-centered, even in an AI-driven world.

This article was researched with the help of Perplexity.ai. 

Share this article
Author
Optimal
Workshop

Related articles

View all blog articles
Learn more
1 min read

Best UX Research Methods for Every Phase of Product Development

What is UX research?

User experience (UX) research, or user research as it’s commonly referred to, is an important part of the product design process. Primarily, UX research involves using different research methods to gather information about how your users interact with your product. It is an essential part of developing, building and launching a product that truly meets the requirements of your users. 

UX research is essential at all stages of a products' life cycle:

  1. Planning
  2. Building
  3. Introduction
  4. Growth & Maturity

While there is no one single time to conduct UX research it is best-practice to continuously gather information throughout the lifetime of your product. The good news is many of the UX research methods do not fit just one phase either, and can (and should) be used repeatedly. After all, there are always new pieces of functionality to test and new insights to discover. We introduce you to best-practice UX research methods for each lifecycle phase of your product.

1. Product planning phase

While the planning phase it is about creating a product that fits your organization, your organization’s needs and meeting a gap in the market it’s also about meeting the needs, desires and requirements of your users. Through UX research you’ll learn which features are necessary to be aligned with your users. And of course, user research lets you test your UX design before you build, saving you time and money.

Qualitative Research Methods

Usability Testing - Observational

One of the best ways to learn about your users and how they interact with your product is to observe them in their own environment. Watch how they accomplish tasks, the order they do things, what frustrates them, and what makes the task easier and/or more enjoyable for your subject. The data can be collated to inform the usability of your product, improving intuitive design, and what resonates with users.

Competitive Analysis

Reviewing products already in the market can be a great start to the planning process. Why are your competitors’ products successful and how well do they behave for users. Learn from their successes, and even better build on where they may not be performing the best and find your niche in the market.

Quantitative Research Methods

Surveys and Questionnaires

Surveys are useful for collecting feedback or understanding attitudes. You can use the learnings from your survey of a subset of users to draw conclusions about a larger population of users.

There are two types of survey questions:

Closed questions are designed to capture quantitative information. Instead of asking users to write out answers, these questions often use multi-choice answers.

Open questions are designed to capture qualitative information such as motivations and context.  Typically, these questions require users to write out an answer in a text field.

2. Product building phase

Once you've completed your product planning research, you’re ready to begin the build phase for your product. User research studies undertaken during the build phase enable you to validate the UX team’s deliverables before investing in the technical development.

Qualitative Research Methods

Focus groups

Generally involve 5-10 participants and include demographically similar individuals. The study is set up so that members of the group can interact with one another and can be carried out in person or remotely.


Besides learning about the participants’ impressions and perceptions of your product, focus group findings also include what users believe to be a product’s most important features, problems they might encounter while using the product, as well as their experiences with other products, both good and bad.

Quantitative Research Methods

Card sorting gives insight into how users think. Tools like card sorting reveal where your users expect to find certain information or complete specific tasks. This is especially useful for products with complex or multiple navigations and contributes to the creation of an intuitive information architecture and user experience.

Tree testing gives insight into where users expect to find things and where they’re getting lost within your product. Tools like tree testing help you test your information architecture.
Card sorting and tree testing are often used together. Depending on the purpose of your research and where you are at with your product, they can provide a fully rounded view of your information architecture.

3. Product introduction phase

You’ve launched your product, wahoo! And you’re ready for your first real life, real time users. Now it’s time to optimize your product experience. To do this, you’ll need to understand how your new users actually use your product.

Qualitative Research Methods

Usability testing involves testing a product with users. Typically it involves observing users as they try to follow and complete a series of tasks. As a result you can evaluate if the design is intuitive and if there are any usability problems.

User Interviews - A user interview is designed to get a deeper understanding of a particular topic. Unlike a usability test, where you’re more likely to be focused on how people use your product, a user interview is a guided conversation aimed at better understanding your users. This means you’ll be capturing details like their background, pain points, goals and motivations.

Quantitative Research Methods

A/B Testing is a way to compare two versions of a design in order to work out which is more effective. It’s typically used to test two versions of the same webpage, for example, using a different headline, image or call to action to see which one converts more effectively. This method offers a way to validate smaller design choices where you might not have the data to make an informed decision, like the color of a button or the layout of a particular image.

Flick-click testing shows you where people click first when trying to complete a task on a website. In most cases, first-click testing is performed on a very simple wireframe of a website, but it can also be carried out on a live website using a tool like first-time clicking.

4. Growth and maturity phase

If you’ve reached the growth stage, fantastic news! You’ve built a great product that’s been embraced by your users. Next on your to-do list is growing your product by increasing your user base and then eventually reaching maturity and making a profit on your hard work.

Growing your product involves building new or advanced features to satisfy specific customer segments. As you plan and build these enhancements, go through the same research and testing process you used to create the first release. The same holds true for enhancements as well as a new product build — user research ensures you’re building the right thing in the best way for your customers.

Qualitative research methods

User interviews will focus on how your product is working or if it’s missing any features, enriching your knowledge about your product and users.

It allows you to test your current features, discover new possibilities for additional features and think about discarding  existing ones. If your customers aren’t using certain features, it might be time to stop supporting them to reduce costs and help you grow your profits during the maturity stage.

Quantitative research methods

Surveys and questionnaires can help gather information around which features will work best for your product, enhancing and improving the user experience. 

A/B testing during growth and maturity occurs within your sales and onboarding processes. Making sure you have a smooth onboarding process increases your conversion rate and reduces wasted spend — improving your bottom line.

Final Thoughts: Why Continuous UX Research Matters

UX research testing throughout the lifecycle of your product helps you continuously evolve and develop a product that responds to what really matters - your users.

Talking to, testing, and knowing your users will allow you to push your product in ways that make sense with the data to back up decisions. Go forth and create the product that meets your organizations needs by delivering the very best user experience for your users.

Learn more
1 min read

Moderated vs unmoderated research: which approach is best?

Knowing and understanding why and how your users use your product is invaluable for getting to the nitty gritty of usability. Delving deep with probing questions into motivation or skimming over looking for issues can equally be informative. 

Put super simply, usability testing literally is testing how usable your product is for your users. If your product isn’t usable users often won’t complete their task, let alone come back for more. No one wants to lose users before they even get started. Usability testing gets under their skin and really into the how, why and what they want (and equally what they don’t).

As we have been getting used to video calling regularly and using the internet for interactions, usability testing has followed suit. Being able to access participants remotely has allowed us to diversify the participant pool by not being restricted to those that are close enough to be in-person. This has also allowed an increase in the number of participants per test, as it becomes more cost-effective to perform remote usability testing.

But if we’re remote, does this mean it can’t be moderated? No - remote testing, along with modern technology, can mean that remote testing can be facilitated and moderated. But what is the best method - moderated or unmoderated?

What is moderated remote research testing?

In traditional usability testing, moderated research is done in person. With the moderator and the participant in the same physical space. This, of course, allows for conversation and observational behavioral monitoring. Meaning the moderator can note not only what the participant answers but how and even make note of the body language, surroundings, and other influencing factors. 

This has also meant that traditionally, the participant pool has been limited to those that can be available (and close enough) to make it into a facility for testing. And being in person has meant it takes time (and money) to perform these tests.

As technology has moved along and the speed of internet connections and video calling has increased, this has opened up a world of opportunities for usability testing. Allowing usability testing to be done remotely. Moderators can now set up testing remotely and ‘dial in’ to observe participants anywhere they are. And potentially even running focus groups or other testing in a group format across the internet. 

Pros of moderated remote research testing:

- In-depth gathering of insights through a back-and-forth conversation and observing of the participants.

- Follow-up questions don’t underestimate the value of being available to ask questions throughout the testing. And following up in the moment.

- Observational monitoring noticing and noting the environment and how the participants are behaving, can give more insight into how or why they choose to make a decision.

- Quick remote testing can be quicker to start, find participants, and complete than in-person. This is because you only need to set up a time to connect via the internet, rather than coordinating travel times, etc.

- Location (local and/or international) Testing online removes reliance on participants being physically present for the testing. This broadens your ability to broaden the pool, and participants can be either within your country or global. 

Cons of moderated remote research testing:

- Time-consuming having to be present at each test takes time. As does analyzing the data and insights generated. But remember, this is quality data.

- Limited interactions with any remote testing there is only so much you can observe or understand across the window of a computer screen. It can be difficult to have a grasp on all the factors that might be influencing your participants.

What is unmoderated remote research testing?

In its most simple sense, unmoderated user testing removes the ‘moderated’ part of the equation. Instead of having a facilitator guide participants through the test, participants are left to complete the testing by themselves and in their own time. For the most part, everything else stays the same. 

Removing the moderator, means that there isn’t anyone to respond to queries or issues in the moment. This can either delay, influence, or even potentially force participants to not complete or maybe not be as engaged as you may like. Unmoderated research testing suits a very simple and direct type of test. With clear instructions and no room for inference. 

Pros of unmoderated remote research testing:

- Speed and turnaround,  as there is no need to schedule meetings with each and every participant. Unmoderated usability testing is usually much faster to initiate and complete.

- Size of study (participant numbers) unmoderated usability testing allows you to collect feedback from dozens or even hundreds of users at the same time. 


- Location (local and/or international) Testing online removes reliance on participants being physically present for the testing, which broadens your participant pool.  And unmoderated testing means that it literally can be anywhere while participants complete the test in their own time.

Cons of unmoderated remote research testing:

- Follow-up questions as your participants are working on their own and in their own time, you can’t facilitate and ask questions in the moment. You may be able to ask limited follow-up questions.

- Products need to be simple to use unmoderated testing does not allow for prototypes or any product or site that needs guidance. 

- Low participant support without the moderator any issues with the test or the product can’t be picked up immediately and could influence the output of the test.

When should you do moderated vs unmoderated remote usability testing?

Each moderated and unmoderated remote usability testing have its use and place in user research. It really depends on the question you are asking and what you are wanting to know.

Moderated testing allows you to gather in-depth insights, follow up with questions, and engage the participants in the moment. The facilitator has the ability to guide participants to what they want to know, to dig deeper, or even ask why at certain points. This method doesn’t need as much careful setup as the participants aren’t on their own. While this is all done online, it does still allow connection and conversation. This method allows for more investigative research. Looking at why users might prefer one prototype to another. Or possibly tree testing a new website navigation to understand where they might get lost and querying why the participant made certain choices.

Unmoderated testing, on the other hand, is literally leaving the participants to it. This method needs very careful planning and explaining upfront. The test needs to be able to be set and run without a moderator. This lends itself more to wanting to know a direct answer to a query. Such as a card sort on a website to understand how your users might sort information. Or a first click to see how/where users will click on a new website.

Planning your next user test? Here’s how to choose the right method

With the ability to expand our pool of participants across the globe with all of the advances (and acceptance of) technology and video calling etc, the ability to expand our understanding of users’ experiences is growing. Remote usability testing is a great option when you want to gather information from users in the real world. Depending on your query, moderated or unmoderated usability testing will suit your study. As with all user testing, being prepared and planning ahead will allow you to make the most of your test.

Learn more
1 min read

Why Understanding Users Has Never Been Easier...or Harder

Product, design and research teams today are drowning in user data while starving for user understanding. Never before have teams had such access to user information, analytics dashboards, heatmaps, session recordings, survey responses, social media sentiment, support tickets, and endless behavioral data points. Yet despite this volume of data, teams consistently build features users don't want and miss needs hiding in plain sight.

It’s a true paradox for product, design and research teams: more information has made genuine understanding more elusive. 

Because with  all this data, teams feel informed. They can say with confidence: "Users spend 3.2 minutes on this page," "42% abandon at this step," "Power users click here." But what this data doesn't tell you is Why. 

The Difference between Data and Insight

Data tells you what happened. Understanding tells you why it matters.

Here’s a good example of this: Your analytics show that 60% of users abandon a new feature after first use. You know they're leaving. You can see where they click before they go. You have their demographic data and behavioral patterns.

But you don't know:

  • Were they confused or simply uninterested?
  • Did it solve their problem too slowly or not at all?
  • Would they return if one thing changed, or is the entire approach wrong?
  • Are they your target users or the wrong segment entirely?

One team sees "60% abandonment" and adds onboarding tooltips. Another talks to users and discovers the feature solves the wrong problem entirely. Same data, completely different understanding.

Modern tools make it dangerously easy to mistake observation for comprehension, but some aspects of user experience exist beyond measurement:

  • Emotional context, like the frustration of trying to complete a task while handling a crying baby, or the anxiety of making a financial decision without confidence.
  • The unspoken needs of users which can only be demonstrated through real interactions. Users develop workarounds without reporting bugs. They live with friction because they don't know better solutions exist.
  • Cultural nuances that numbers don't capture, like how language choice resonates differently across cultures, or how trust signals vary by context.
  • Data shows what users do within your current product. It doesn't reveal what they'd do if you solved their problems differently to help you identify new opportunities. 

Why Human Empathy is More Important than Ever 

The teams building truly user-centered products haven't abandoned data but they've learned to combine quantitative and qualitative insights. 

  • Combine analytics (what happens), user interviews (why it happens), and observation (context in which it happens).
  • Understanding builds over time. A single study provides a snapshot; continuous engagement reveals the movie.
  • Use data to form theories, research to validate them, and real-world live testing to confirm understanding.
  • Different team members see different aspects. Engineers notice system issues, designers spot usability gaps, PMs identify market fit, researchers uncover needs.

Adding AI into the mix also emphasizes the need for human validation. While AI can help significantly speed up workflows and can augment human expertise, it still requires oversight and review from real people. 

AI can spot trends humans miss, processing millions of data points instantly but it can't understand human emotion, cultural context, or unspoken needs. It can summarize what users say but humans must interpret what they mean.

Understanding users has never been easier from a data perspective. We have tools our predecessors could only dream of.  But understanding users has never been harder from an empathy perspective. The sheer volume of data available to us creates an illusion of knowledge that's more dangerous than ignorance.

The teams succeeding aren't choosing between data and empathy, they're investing equally in both. They use analytics to spot patterns and conversations to understand meaning. They measure behavior and observe context. They quantify outcomes and qualify experiences.

Because at the end of the day, you can track every click, measure every metric, and analyze every behavior, but until you understand why, you're just collecting data, not creating understanding.

Seeing is believing

Explore our tools and see how Optimal makes gathering insights simple, powerful, and impactful.